4.2 Integral Exponents

KEY IDEAS

• A power with a negative exponent can be written as a power with a positive exponent.

$$-a^{-n}=\frac{1}{a^n}, a \neq 0$$

$$2^{-5} = \frac{1}{2^5}$$

$$-a^{-n} = \frac{1}{a^n}, a \neq 0$$
 $2^{-5} = \frac{1}{2^5}$ $-\frac{1}{a^{-n}} = a^n, a \neq 0$ $\frac{1}{2^{-5}} = 2^5$

$$\frac{1}{2^{-5}} = 2^5$$

• You can apply the above principle to the exponent laws.

Exponent Law	Example
Note that a and b are rational or variable bases and m and n are integral exponents.	
Product of Powers $(a^m)(a^n) = a^{m+n}$	$(3^{-2})(3^4) = 3^{-2+4}$ = 3 ² or 9
Quotient of Powers $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{x^3}{x^{-5}} = x^{3 - (-5)} \\ = x^8$
Power of a Power $(a^m)^n = a^{mn}$	$(0.75^4)^{-2} = 0.75^{(4)(-2)}$ = 0.75 ⁻⁸ or $\frac{1}{0.75^8}$
Power of a Product $(ab)^m = a^m b^m$	$(4z)^{-3} = \frac{1}{(4z)^3}$ or $\frac{1}{64z^3}$
Power of a Quotient $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$	$\left(\frac{t}{3}\right)^{-2} = \left(\frac{3}{t}\right)^2$ $= \frac{3^2}{t^2} \text{ or } \frac{9}{t^2}$
Zero Exponent $a^0 = 1, a \neq 0$	$(4y^2)^0 = 1$ -(4y ²) ⁰ = -1

Example

Write each expression as a power with a single, positive exponent. Then, evaluate where possible.

a)
$$\left(\frac{0.4^{-2}}{0.4^2}\right)$$

b)
$$(6^4)(6^{-2})$$

b)
$$(6^4)(6^{-2})$$
 c) $[(3x)^{-2}]^{-3}$

Solution

a) Method 1: Subtract the Exponents

Since the bases are the same, you can subtract the exponents.

Method 2: Use Positive Exponents

Convert the negative exponent to a positive exponent. Then, add the exponents when multiplying.

b) Method 1: Add the Exponents

Since the bases are the same, you can add the exponents.

$$(6^{4})(6^{-2}) = 6^{4 + (-2)}$$

$$= 6^{2}$$

$$= 36$$

Method 2: Use Positive Exponents

Convert the negative exponent to a positive exponent. Then, subtract the exponents when dividing.

$$(6^{4})(6^{-2}) = (6^{4}) \left(\frac{1}{6^{2}}\right)$$

$$= \frac{6^{4}}{6^{2}}$$

$$= 6^{4-2}$$

$$= 6^{2}$$

$$= 36$$

c) Method 1: Multiply the Exponents

Raise the power to the exponent. Then, multiply the exponents.

$$[(3x)^{-2}]^{-3} = (3x)^{(-2)(-3)}$$
$$= (3x)^{6}$$
$$= 729x^{6}$$

Method 2: Use Positive Exponents

Convert the negative exponent to a positive exponent. Convert twice. Then, multiply the exponents.

$$[(3x)^{-2}]^{-3} = \left[\frac{1}{(3x)^2}\right]^{-3}$$

$$= [(3x)^2]^3$$

$$= (3x)^{(2)(3)}$$

$$= (3x)^6$$

$$= 729x^6$$

Hint: When an expression has a coefficient and a variable, apply the exponent law to each one. $(2b)^3 = (2^3)(b^3) = 8b^3$

A Practise

1. Write each expression with positive exponents.

a)
$$4^{-2}$$

b)
$$3x^{-3}$$

c)
$$(5x)^{-2}$$

d)
$$6a^{-3}b^{-2}$$

e)
$$-5a^{-4}$$

f)
$$-4a^4b^{-5}$$

g)
$$\left(\frac{2}{3}\right)^{-3}$$

h)
$$\frac{-3x^2}{y^{-4}}$$

i)
$$\frac{6a^{-3}}{b^4}$$

2. Shelby rewrote the expression $\left(\frac{y^3}{4\sqrt{5}}\right)^{-2}$ as $\frac{8x^{10}}{v^6}$. Is her answer correct? Justify your answer.

3. Simplify, then evaluate. Express your answers to four decimal places, if necessary.

b)
$$\left(\frac{-4^2}{2^3}\right)^{-3}$$

c)
$$[(2^{-2})(2^4)]^{-2}$$

d)
$$\left(\frac{-5^3}{5^3}\right)^{-3}$$

e)
$$\left(\frac{4}{4^3}\right)^{-3}$$

f)
$$\left(\frac{4^{-2}}{3^{-3}}\right)^2$$

4. Simplify each expression by restating it using positive exponents only.

a)
$$a^4b^{-5}$$

b)
$$\frac{-2}{a^3b^{-2}}$$

c)
$$[(p)^{-6}(p)^2]^{-3}$$

e) $(6x^{-4})^{-2}$

d)
$$\frac{12s^3}{4s^{-7}}$$

e)
$$(6x^{-4})^{-2}$$

$$\mathbf{f}) \left(\frac{t^{-3}}{t^5} \right)^{-2}$$

g)
$$[(n^3)(n^{-5})]^2$$

h)
$$(xy^{-3})^{-2}$$

67

- ★5. Simplify each expression. State the answer using positive exponents.
 - **a)** $(6)^{-3}(6)$
- **b)** $\frac{(-2)^{-6}}{(-2)^{-3}}$

c) $\frac{3^3}{3^{-2}}$

- **d)** $\left(\frac{4^0}{4^{-2}}\right)^2$
- **e)** $(6^{-4})^2$
- **f)** $-(3^4)^{-3}$
- **g)** $[(2^4)(2^{-7})]^{-3}$
- **h)** $\left(\frac{3^3}{4^3}\right)^{-2}$
- i) $(4a^{-3})^{-2}$
- **j**) $-3[(2^4)(2^{-3})]^{-2}$
- 6. The students in a grade 10 class were investigating the algae growth rate on the surface of a local lake. When they began, 425 cm^2 of the surface area of the lake was covered with algae. The amount of surface area covered with algae doubles each month. The students modelled this situation using the formula $SA = 425(2)^n$, where SA is the surface area of the lake covered in algae after n months. If conditions remain constant, how much of the lake will be covered in algae
 - a) after 6 months?
 - b) after 2 years?
- 7. A biologist is monitoring the population growth of caribou in a national park. There were 1400 caribou in 2010. The caribou population increases at a growth rate of 1.04% per year. The growth rate can be modelled using the formula $P = 1400(1.04)^n$, where P is the projected population after n years. Assuming that the growth rate remains constant, what would be the estimated caribou population in 2014?

B Apply

- **8.** A culture of bacteria in a lab contains 400 bacterium cells. The number of cells doubles every hour. This situation can be modelled by the equation $B = 400(2)^h$, where B is the estimated number of bacteria and h is the time in hours. How many bacteria were present
 - a) after 3 h?

- **b)** after 24 h?
- c) 3 h ago?
- **\bigstar9.** Without using a calculator, evaluate $[((2^{-1})^2)^3]^{-1}$.
 - **10.** Kevin simplified $(2^3)(3^2)$ as 6^5 . Is he correct? Justify your answer.
 - **11.** A radioactive element has a half-life of one month. The amount of the element remaining is given by the formula
 - $A = 400 \left(\frac{1}{2}\right)^n$, where *n* is the number of months. Today there are 400 g of the element.
 - a) How much will remain after 4 months?
 - **b)** How much was there a month ago?
- ★12. The formula $d = \frac{1}{2}gt^2$ can be used to determine how long it takes an object to fall a certain distance from rest. In the formula, d is the distance the object falls, in metres, g is the acceleration due to gravity at 9.8 m/s², and t is the time it takes to fall, in seconds. Express each answer to one decimal place.
 - a) From what height does a penny fall if it takes 12.4 s to reach the ground?
 - **b)** How long does a penny take to fall from a height of 28.5 m?
 - c) How long does a penny take to reach the ground from a height of 248 m?
 - 13. The population of Earth reached 6.8 billion people in 2009. Assume that the population increases by a growth rate of 1.8% per year and that the rate remains the same. The rate of growth can be modelled using the formula $P = [(6.8)(10^9)](1.018)^n$, where P is the estimated population and n is the number of years. Determine the projected population
 - a) by the end of 2015
 - **b)** by the end of 2020

- 14. In 2010, there were approximately 34 million people living in Canada. Assume that Canada's overall population growth rate is 0.9% per year and that the growth rate remains constant. The population can be estimated using the formula $P = [(3.4)(10^7)](1.009)^n$, where P is the estimated population and n is the number of years. What is the projected population
 - a) in 2018?
 - **b)** in 2021?

C Extend

- ★15. Suppose you win the opportunity to receive a cash prize of \$15 000 or double your money each year for a period of 25 years starting with an initial payment to you of \$0.01. The value of your winnings can be determined using the formula $A = 0.01(2)^n$, where A is the payment at the end of n years.
 - a) What is the value of the payment you would receive after 3 years? after 10 years? after 25 years?
 - **b)** Which offer would you accept? Explain why.
 - c) If you received a cheque each year, how much money would you have received in total over the 25-year period?
 - **16.** The amount of sodium-24 remaining in a sample that started at 86 g can be represented by the equation

 $N = 86(0.5)^{\frac{t}{15}}$, where *t* is time, in hours. Determine the amount of sodium-24 remaining after each of the following time periods. Express the answers to two decimal places, if necessary.

- **a)** after 30 h
- **b)** after 90 h
- c) after 120 h

17. Determine the value of *x* that makes each statement true.

a)
$$\left(\frac{4}{5}\right)^x = \frac{625}{256}$$

b)
$$-3^x = -729$$

c)
$$x^{-3} = \frac{27}{8}$$

d)
$$2(6^x) = 432$$

- **18.** A scientist discovered a new isotope and called it mathodium-334. In the formula $A_f = A_i(3)^{-t}$, A_f represents the amount of the isotope remaining, A_i is the initial amount, in grams, and t is the time in days.
 - a) If a sample started at 85 g, how much would remain after 4 days? Express the answer to two decimal places.
 - b) The amount of mathodium-334 remaining after 6 h is 0.165 g. Calculate the amount of the original sample. Express the answer to two decimal places.

D Create Connections

- **19.** Is $[(2^3)^4]^2$ equal to $[(2^4)^2]^3$? Justify your answer.
- \bigstar **20.** What value of *x* makes the following statement true?

$$2^x + 2^x + 2^x + 2^x = 256$$

- **21.** Without using a calculator, show that $2^2 + 2^3 + 2^4$ is not equal to $(2^2)(2^3)(2^4)$. Explain why the answers are not the same.
- **22.** Describe a real-life situation in which a positive exponent and a negative exponent can be used to model a problem.
 - a) Give an example of what the positive exponent represents.
 - **b)** Give an example of what the negative exponent represents.