KEY IDEAS

- To factor a trinomial of the form $x^2 + bx + c$, first find two integers with
 - a product of c
 - a sum of b

For $x^2 + 12x + 27$, find two integers with

- a product of 27
- a sum of 12

The two integers are 3 and 9.

Therefore, the factors are x + 3 and x + 9.

- To factor a trinomial of the form $ax^2 + bx + c$ (where b and c are integers), first factor out the GCF, if possible. Then, find two integers with
 - a product of (a)(c)
 - a sum of b

Finally, write the middle term as a sum. Then, factor by grouping.

For
$$8k^2 - 16k + 6$$
, the GCF is 2, so

$$8k^2 - 16k + 6 = 2(4k^2 - 8k + 3)$$

Identify two integers with

- a product of (4)(3) = 12
- -a sum of -8

The two integers are -2 and -6. Use these two integers to write the middle term as a sum.

Then, factor by grouping.

$$2(4k^2 - 2k - 6k + 3) = 2(2k - 3)(2k - 1)$$

• You cannot factor some trinomials, such as $x^2 + 3x + 5$ and $3x^2 + 5x + 4$, over the integers.

Example

Factor $6a^2 + 11a - 10$, if possible.

Solution

$$6a^2 + 11a - 10$$

Ask: Are there two integers that when multiplied together

equal -60 and when added together equal 11?

Numbers that multiply to make 60.

Numbers that could add to make 11.

$$6a^2 + 15a - 4a - 10$$

 $3a(2a + 5) - 2(2a + 5)$

$$3a(2a+5)-2(2a+5)$$

Then, break up the middle term with these integers. Factor by grouping.

$$3a(2a + 5) - 2(2a + 5)$$

 $(3a - 2)(2a + 5)$

A Practise

1. State the trinomial represented by each rectangle of algebra tiles. Then, determine the dimensions of each rectangle.

2. Use algebra tiles or a diagram to factor each trinomial.

a)
$$2x^2 + 3x + 1$$

b)
$$3x^2 + 5x - 2$$

c)
$$6x^2 - 13x + 6$$

d)
$$2x^2 + 5x - 12$$

e)
$$4x^2 - 18x - 10$$

f)
$$3x^2 + 17x - 28$$

3. If possible, identify integers with the given product and sum.

	Product	Sum
a)	12	8
b)	15	-3
c)	-4	-3

4. Factor, if possible.

a)
$$y^2 + 8y + 12$$

b)
$$x^2 + 10x + 21$$

c)
$$a^2 - 19a + 90$$

d)
$$y^2 - 4y - 6$$

e)
$$m^2 - mn - 42n^2$$

f)
$$b^2 + 19b + 34$$

5. Factor, if possible.

a)
$$g^2 - 10g + 24$$

b)
$$n^2 - 15n + 26$$

c)
$$c^2 - 15c + 56$$

d)
$$s^2 - 7st + 10t^2$$

e)
$$f^2 - 6f + 12$$

f)
$$3v^2 + v - 2$$

6. Factor, if possible.

a)
$$2r^2 + 11r + 14$$

b)
$$2l^2 + 11l + 12$$

c)
$$3w^2 + 9w + 6$$

d)
$$10b^2 + 8b + 2$$

e)
$$v^2 + 5vz + 6z^2$$

f)
$$12a^2 + 19a + 4$$

7. Factor, if possible.

a)
$$2f^2 + 7f - 15$$

b)
$$r^2 + r - 110$$

c)
$$6b^2 + 6b - 3$$

d)
$$10m^2 - 17mn + 3n^2$$

e)
$$x^2 - x + 56$$

f)
$$9g^2 - 9gf + 2f^2$$

g)
$$6l^2 + 32l + 42$$

h)
$$5a^2 - 52a + 63$$

B Apply

8. Determine at least two values of *d* that allow each expression to be factored.

a)
$$a^2 + da + 6$$

b)
$$w^2 + dw - 15$$

c)
$$y^2 - dy + 18$$

d)
$$r^2 - dr - 14$$

9. Determine two values of *h* that allow each expression to be factored.

a)
$$6p^2 + hp - 1$$

b)
$$d^2 + hd + 8$$

c)
$$t^2 - ht + 56$$

d)
$$s^2 - hs - 20$$

10. Determine two values of *p* that allow each expression to be factored.

***a)**
$$c^2 - pc - 10$$

b)
$$x^2 + pxy + 3y^2$$

c)
$$a^2 + pab + 14b^2$$

d)
$$v^2 - pvw + 35w^2$$

11. Identify one value of *r* that will allow each expression to be factored.

a)
$$10b^2 + 14b - r$$

b)
$$rs^2 + 19st + 3t^2$$

c)
$$d^2 - 8de + re^2$$

d)
$$5y^2 - 32y - r$$

e)
$$2x^2 - 11x - r$$

f)
$$3x^2 - 3x - r$$

- 12. The penalty area on a soccer field can be represented by the trinomial $6x^2 2x 48$.
 - a) Factor the trinomial to determine a binomial that represents the width and the length of the area.
 - **b)** The unit used for soccer fields is the yard. What are the dimensions of the area if x = 12 yd?

★13. Determine the binomials that represent the width and length of each rectangle. Then, calculate the dimensions if x = 12 cm.

Area =
$$x^2 + 11x + 24$$

Area =
$$8x^2 + 6x - 2$$

- **14.** Carol throws a ball that will move through the air in a parabolic path due to gravity. The height, h, in feet, of the ball above the ground after t seconds can be modelled by the expression $h = -6t^2 + 27t + 15$.
 - a) Write the formula in factored form.
 - **b)** What is the height of the ball above the ground 4 s after it is thrown?
- **15. a)** The area of a parallelogram is $A = x^2 + 13x + 42$. Determine the binomials that represent the height, h, of the parallelogram and the length, b, of its base. Then, calculate the dimensions of the parallelogram if x = 18 cm.
 - b) Suppose the area of the parallelogram in part a) is $A = 6x^2 + 7x 3$. What are the binomials that represent the height and length of the parallelogram? Determine the dimensions if x = 18 cm.

C Extend

★16. The area of a rectangle can be represented by the expression $35 - 8x - 3x^2$, where x represents a positive integer. What are the possible values for the width and the length of the rectangle?

- 17. Determine one value of c that allows the trinomial $cv^2 + 36v - 18$ to be factored over the integers.
- 18. a) What shape might have an area represented by the expression $16s^2 - 48s + 36$?
 - **b)** What in the expression indicates that shape?
 - c) What are the factors?
- 19. The area of a certain shape can be represented by the expression $x^2 + 6x + 9$.
 - a) Identify a possible shape.
 - **b)** Write expressions for the possible dimensions of the shape you identified in part a).
 - c) Suppose you have a second figure in the same shape as the shape you identified in part a) except that its area can be represented by the expression $4x^2 + 24x + 36$. Explain how you can use mental math to determine the dimensions of the second figure.

D Create Connections

- **20.** A classmate is able to factor trinomials such as $n^2 + 7n - 44$ or $n^2 - 20n - 44$, but not trinomials such as $6n^2 + 13n - 5$ or $4n^2 - n - 3$. Explain the similarities and differences in factoring these two types of trinomials in sufficient detail that your classmate is then able to factor both types.
- 21. Write the completed statements after determining the answer in the blanks.
 - a) When factoring a trinomial of the form $x^2 + bx + c$, such as $x^2 + 5x + 6$, one can ask, "What two integers have a sum of ____ and a product of ____?"

b) The general form to show why part a) works, with each of m and n being any integer, is

$$(x + m)(x + n) = x^2 + nx + \underline{\hspace{1cm}} + mn$$

= $x^2 + (n + \underline{\hspace{1cm}})x + mn$

- c) Consider a trinomial of the form $ax^2 + bx + c$, such as $2x^2 + 13x$ + 15. When factoring a trinomial of this form by grouping to break up the middle term, one can ask, "What two integers have a product of _____ and a sum of ?"
- **d)** The general form to show why part c) works, with each of a, m, and n being any integer, is

$$(ax + m)(x + n) = ax^2 + anx + __ + mn$$

= $ax^2 + (an + __)x + mn$

22. A rectangular prism has the volume as shown.

- a) Factor the expression that represents the volume to determine the length of each of the sides of the prism.
- **b)** If x = 5 cm, determine the lengths of the sides and the volume of the rectangular prism.