Chapter 6 Review

6.1 Graphs of Relations

1. a) items: i) bananas, ii) deli ham, iii) granola, iv) milk, v) bread

b) For speed, use either metres per minute or feet per minute. Time would best be measured in minutes.

- 2. a) Example: mile 0 to approximately mile 3, the cyclist would face a long, steep climb and then would go downhill steeply for almost 2 miles; mile 15 to mile 20 might be a rolling portion of the ride, with short climbs and descents
 - b) Example: easiest portion: mile 23 to mile 28, where the riding is flat, with no elevation gain; most difficult: mile 0 to mile 8, where there are a series of steep climbs and descents

6.2 Linear Relations

- **3. a)** Discrete. The number will always be a whole number. The numbers between have no meaning.
 - **b)** Continuous. Time increases constantly. The player could have any number of minutes and seconds.
 - c) Discrete. The number is always countable. Again, numbers between have no meaning.
- 4. a) fee charged = f (fee)
 insured amount = v (value)
 The insured amount would be the
 independent variable, as the fee depends
 on the value shipped.
 - b) Non-linear. The fees do not rise in a pattern. Some sections are linear, going up by \$1.00 for each \$100 increase in value; others don't change by that same amount.

6.3 Domain and Range

5. a) D = {0, 3, 5}; R = {-7, 5, -4, 0, 11}
b) Factors of 10 are D = {1, 2, 5, 10};
Answers are R = {10, 5, 2, 1}

6.	Set Notation	Interval Notation
	$\{x \mid 3 < x < 7\}$	(3, 7)
	$\{x \mid -5 \le x \le 0\}$	[-5, 0]
	$\{x \mid -13 < x \le 27\}$	(13, 27]
	$\{x \mid x \le 5\}$	(-∞, 5]

7. a) D =
$$\{x \mid -5 \le x \le 1\}$$
;

$$R = \{ y \mid -4 \le y \le 1 \}$$

b) D =
$$\{x \mid 1 \le x < 6\};$$

R = $\{y \mid -5 < y < 1\}$

6.4 Functions

8. a)
$$f(0) = 1$$

b)
$$f(-1) = 5$$

c)
$$f(3) = 13$$

d) Different domain values giving the same range value still defines a function. It is when the same input value produces 2 different outcomes that a relation is then not a function.

It passes the vertical line text because a vertical line passes through only one point on the graph.

9. a)
$$V(s) = s^3$$
; $V(r) = (4/3)\pi r^3$.

Side Length of Cube	Volume of Cube	Volume of Sphere Inside
10 cm	1000 cm^3	523.6 cm ³
20 cm	8000 cm^3	4188.8 cm ³
30 cm	$27\ 000\ cm^3$	14 137 cm ³
40 cm	$64\ 000\ {\rm cm^3}$	$33\ 510\ cm^3$

6.5 Slope

10. a)
$$-\frac{5}{9}$$
; negative **b)** $\frac{4}{3}$; positive

b)
$$\frac{4}{3}$$
; positive

c)
$$-\frac{12}{1}$$
; negative

11. a)

- **b)** The four slopes are $+\frac{20}{1}$, $+\frac{30}{1}$, $+\frac{10}{1}$,
- c) These slope values show the rate of increase in daily distance from one day to the next.
- d) A negative slope means that he didn't increase his daily distance, but decreased it instead.