Chapter 4 Review

4.1 Square Roots and Cube Roots

- 1. Which of the following numbers are perfect squares, perfect cubes, or both?
 - **a)** 49

b) 343

c) 484

- **d)** 1728
- e) 1024
- **f)** 15 625
- 2. Use prime factorization to evaluate
 - **☆a)** √196
- **b)** $\sqrt[3]{512}$
- 3. Calculate.
 - a) $\sqrt{256}$
- **b)** $\sqrt[3]{2197}$
- c) $\sqrt[3]{27000}$
- **4.** What are the dimensions of the square?

$$A = 361 \text{ cm}^2$$

- ★5. Christina wants to replace the flooring in her bedroom with square tiles. Each tile measures 6 in. by 6 in. The area of the floor is 9 ft by 9 ft.
 - a) How many tiles does Christina need?
 - **b)** Each tile costs \$1.38 including taxes. How much will the tiles cost?

4.2 Integral Exponents

- **6.** Write as a power with a positive exponent.
 - **a)** $(a^3)^{-2}$
 - **b)** $\frac{(3.5)^3}{(3.5)^{-4}}$

$$\bigstar$$
c) $\left(\frac{b^2}{b^{-5}}\right)^2$

- **7.** Evaluate each expression. Express the answer to three decimal places, if necessary.
 - **a)** $(3^2)^{-2}$

b)
$$\left[\frac{5^2}{(2.5)^3(1.25)}\right]^3$$

c)
$$(0.5^2)^{-3}(2.8^2)^2$$

- **8.** A radioactive element has a half-life of one month. The formula for the amount of the element remaining is $A = m\left(\frac{1}{2}\right)^n$, where m is the mass of the element, in grams, and n is the number of months. How much of a 740-g sample of the element
 - **a)** remains after 6 months? Express your answer to two decimal places.
 - **b)** remains after 14 months? Express your answer to three decimal places.
 - c) was there 4 months ago? Express your answer to the nearest gram.
- 9. Newfoundland has the highest population density of moose in North America. In 2009, there were approximately 135 000 moose on the island. Assuming a growth rate of 8.5%, this situation can be modelled using the formula P = 135 000(1.085)ⁿ, where P is the estimated moose population and n is the number of years since 2009. If the growth rate remains constant, how many moose will there be after
 - **a)** 1 year?
 - **b)** 2 years?
 - **c)** 5 years?
- **10. a)** Using the information in #9, how many moose will there be in 2020?
 - b) Assume that the growth rate was the same before 2009. How many moose were there at the beginning of 2000?

4.3 Rational Exponents

- ★11. Simplify each expression. Express each answer with a positive exponent.
 - **a)** $(5^{-0.5})^{\frac{3}{4}}$
 - **b)** $\frac{2.8^{0.4}}{2.8^{\frac{-1}{2}}}$
 - **c)** $(27x^{-2})^{\frac{-2}{3}}$
 - 12. Without using a calculator, Victoria incorrectly simplified the following expression. What errors did she make? Determine the correct answer.

$$(27x)^{\frac{-1}{3}}(9x)^{\frac{1}{2}} = (243x)^{\left(\frac{-1}{3} + \frac{1}{2}\right)}$$
$$= (243x)^{\frac{1}{6}}$$

- ★13. Without using a calculator, evaluate each expression.
 - a) $\frac{8^{\frac{5}{3}}}{4^2}$
- **b)** $\frac{125^{\frac{2}{3}}}{5^{-1}}$
- c) $\frac{9^{\frac{3}{2}}}{27^{\frac{1}{2}}}$
- **d)** $\frac{8^{\frac{2}{3}}}{32^{\frac{4}{3}}}$
- **14.** Evaluate each expression. Express each answer to four decimal places, if necessary.
 - $_{20}\left(20^{\frac{1}{4}}\right)\left(20^{\frac{2}{3}}\right)$
- **b)** $(6^{-4})^{\frac{1}{3}}$
- c) $\left(\frac{2.5^{\frac{3}{4}}}{2.5-0.5}\right)^2$
- **d)** $\frac{(25^3)}{(2^3)(10^2)}$
- 15. Jessica invested \$1500 in an account that increases in value at a rate of 3.25% annually. The value of the account can be determined using the formula $A = 1500(1.0325)^{t}$, where A is the total value of the investment and t is the number of years. What is the value of Jessica's account at the end of three years?
- 16. The students in a grade 10 class are making T-shirts for a fundraiser. The cost of the ink needed to print T-shirts can be determined using the equation $C = 5.75n^{\frac{2}{4}} + 60$, where *n* is the number of T-shirts. Determine the cost of the ink needed to print 350 T-shirts.

17. Iodine-131 has a half-life of 8 days. Iodine-131 has medical uses such as treating people with an overactive thyroid. A patient is given 9.5 mg of iodine-131. How much would remain in the patient's body after 30 days? Use the formula $A = 9.5(0.5)^{\frac{1}{8}}$, where A is the amount remaining in the patient's body and t is the time, in days. Express the answer to the nearest thousandth of a milligram.

4.4 Irrational Numbers

- **18.** Write each power as an equivalent radical.
- **b)** $(16s^3)^{\frac{3}{5}}$
- **a)** $x^{\frac{2}{5}}$ **c)** $\left(\frac{a^5}{7}\right)^{0.75}$
- **d)** $(5a^4)^{\frac{-1}{3}}$
- 19. Express each radical as a power.
 - a) $\sqrt{x^5}$
- **b**) $\sqrt[4]{5^2}$
- c) $4\sqrt[5]{x^3}$
- **d)** $\sqrt[3]{(4v)^4}$
- 20. Convert each mixed radical to an equivalent entire radical.
 - a) $4\sqrt{7}$
- **b)** $6\sqrt{5}$
- ★c) $3\sqrt[3]{2}$
- **d)** $-5\sqrt[3]{3}$
- 21. Express each entire radical as an equivalent mixed radical.
 - a) $\sqrt{252}$
- **b)** $\sqrt[3]{384}$
- c) $\sqrt[4]{48}$
- **d)** $\sqrt[3]{405}$
- **22.** Identify the irrational numbers in each set. Then, arrange the numbers from greatest to least.
 - **a)** $\sqrt[3]{216}$ 0.2 $\overline{3}$ $\frac{4\sqrt{5}}{2}$ $\sqrt{0.25}$
 - **b)** $\sqrt{0.81}$ $\sqrt[3]{32}$ $\frac{3\sqrt{25}}{4}$ $0.\overline{49}$
- **23.** The volume of a sphere is given by the formula $V = \frac{4\pi r^3}{3}$, where *r* is the radius of the sphere.
 - a) What is the volume of a sphere with a radius of 25.4 cm? Express the answer to two decimal places.
 - **b)** Determine the radius of a sphere with a volume of 384.66 cm³. Express the answer to one decimal place.