Name: 
 

Math 10 Foundations LG 11 Unit 3 Practice Test 4



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Which arrow diagram shows the association “is less than” from a set of numbers to a set of numbers?
a.

mc001-1.jpg
c.

mc001-3.jpg
b.

mc001-2.jpg
d.

mc001-4.jpg
 

 2. 

This graph shows distance, d kilometres, as a function of time, t minutes. Determine the vertical and horizontal intercepts.

   mc002-1.jpg 
a.
Vertical intercept: 80
Horizontal intercept: 96
c.
Vertical intercept: 96
Horizontal intercept: 80
b.
Vertical intercept: 64
Horizontal intercept: 96
d.
Vertical intercept: 80
Horizontal intercept: 64
 

 3. 

This graph shows the volume of water remaining in a leaking hot tub as a function of time. Determine the domain and range.

   mc003-1.jpg 
a.
Domain: mc003-2.jpg
Range: mc003-3.jpg
c.
Domain: mc003-6.jpg
Range: mc003-7.jpg
b.
Domain: mc003-4.jpg
Range: mc003-5.jpg
d.
Domain: mc003-8.jpg
Range: mc003-9.jpg
 

 4. 

This graph represents the time it takes to fill a 140-L hot-water tank. Determine the volume of water in the tank after 50 min.
                                                                   
mc004-1.jpg             
a.
about 23 L
c.
about 119 L
b.
about 97 L
d.
about 108 L
 

 5. 

The slope of a line is mc005-1.jpg. What is the slope of a line that is perpendicular to this line?
a.
mc005-2.jpg
c.
mc005-4.jpg
b.
mc005-3.jpg
d.
mc005-5.jpg
 

 6. 

Which graph represents the equation mc006-1.jpg?
a.

mc006-2.jpg
c.

mc006-4.jpg
b.

mc006-3.jpg
d.

mc006-5.jpg
 

 7. 

Write an equation in slope-point form for this line.

mc007-1.jpg
a.
mc007-2.jpg
c.
mc007-4.jpg
b.
mc007-3.jpg
d.
mc007-5.jpg
 

 8. 

Write an equation in slope-point form for the line that passes through A(–2, 4) and
B(–9, 6).
a.
mc008-1.jpg
c.
mc008-3.jpg
b.
mc008-2.jpg
d.
mc008-4.jpg
 

 9. 

Which equation is written in general form?
a.
mc009-1.jpg
c.
mc009-3.jpg
b.
mc009-2.jpg
d.
mc009-4.jpg
 

 10. 

A line has x-intercept –9 and y-intercept 3. Determine the equation of the line in general form.
a.
mc010-1.jpg
c.
mc010-3.jpg
b.
mc010-2.jpg
d.
mc010-4.jpg
 

 11. 

This set of ordered pairs shows the heights of 5 students:
{(Sharon, 188 cm), (Petra, 180 cm), (Ammon, 173 cm), (Daniel, 165 cm), (Andrew, 173 cm)}
Represent the relation as an arrow diagram.
a.

mc011-1.jpg
c.

mc011-3.jpg
b.

mc011-2.jpg
d.

mc011-4.jpg
 

 12. 

The members of the Salvatore family can be associated with their masses, in kilograms. Consider the relation represented by this set of ordered pairs. Describe the relation in words.
mc012-1.jpg  
         
a.
The relation shows the association “has a mass, in kilograms, of” from a set of masses to a set of members of the Salvatore family.
b.
The relation shows the association “has a mass, in grams, of” from a set of members of the Salvatore family to a set of masses.
c.
The relation shows the association “has a mass, in kilograms, of” from a set of members of the Salvatore family to a set of masses.
d.
The relation shows the association “has a height, in kilograms, of” from a set of members of the Salvatore family to a set of masses.
 

 13. 

This table shows the masses, m grams, of different numbers of identical beads, n. Identify the domain.

Number of Beads,
n
Mass of Beads, m
(g)
1
1.56
2
3.12
3
4.68
4
6.24
5
7.80
a.
mc013-1.jpg
b.
mc013-2.jpg
c.
mc013-3.jpg
d.
mc013-4.jpg
 

 14. 

This table shows the cost, C dollars, of different numbers of tickets sold, n. Identify the range.

Number of Tickets,
n
Cost, C
($)
1
12.50
2
25.00
3
37.50
4
50.00
5
62.50
a.
mc014-1.jpg
b.
mc014-2.jpg
c.
mc014-3.jpg
d.
mc014-4.jpg
 

 15. 

Write mc015-1.jpg as an equation in two variables.
a.
mc015-2.jpg
c.
mc015-4.jpg
b.
mc015-3.jpg
d.
mc015-5.jpg
 

 16. 

The function mc016-1.jpg converts a temperature, f degrees Fahrenheit, to C degrees Celsius. Determine mc016-2.jpg to the nearest degree.
a.
38°C
b.
102°C
c.
4°C
d.
–4°C
 

 17. 

Each point on this graph represents a person. Which two people are the same age?

mc017-1.jpg
a.
E and F
c.
D and E
b.
C and D
d.
B and C
 

 18. 

Joshua went on a bike ride. During the ride, he stopped to play at a park, as shown by line segment CD. How much time did Joshua spend at the park? 

mc018-1.jpg
a.
65 min.
b.
75 min.
c.
70 min.
d.
80 min.
 

 19. 

This graph shows the height of the tide in a harbour as a function of time in one day. What is the greatest height of the tide?

mc019-1.jpg
a.
9 m
b.
2 m
c.
8 m
d.
4 m
 

 20. 

This graph shows the free-fall speed of a skydiver as a function of time. At what speed was the skydiver travelling 10 s before she reached the ground?

mc020-1.jpg
a.
20 km/h
b.
140 km/h
c.
30 km/h
d.
10 km/h
 

 21. 

This graph shows the cost of parking, c, as a function of time, t. Determine the domain of the graph.
                                                                   
mc021-1.jpg             
a.
mc021-2.jpg
c.
mc021-4.jpg
b.
mc021-3.jpg
d.
mc021-5.jpg
 

 22. 

Which table of values represents a linear relation?
i)
Distance (m)05101520
Time (s)01234

ii)              
Time (s)036912
Distance (m)010223652

iii)              
Time (s)01234
Speed (m/s)01248

iv)              
Distance (m)04163664
Speed (m/s)02468
            
a.
iii
b.
i
c.
ii
d.
iv
 

 23. 

Which of these line segments are parallel?
mc023-1.jpg
a.
CD and EF
c.
AB and CD
b.
EF and GH
d.
AB and EF
 

 24. 

The slope of a line is mc024-1.jpg. What is the slope of a line that is perpendicular to this line?
a.
mc024-2.jpg
c.
mc024-4.jpg
b.
mc024-3.jpg
d.
mc024-5.jpg
 

 25. 

Determine the slope of a line that is parallel to the line through L(–6, 3) and K(12, –9).
a.
mc025-1.jpg
c.
mc025-3.jpg
b.
mc025-2.jpg
d.
mc025-4.jpg
 

 26. 

Write an equation to describe this graph.

mc026-1.jpg
a.
mc026-2.jpg
c.
mc026-4.jpg
b.
mc026-3.jpg
d.
mc026-5.jpg
 

 27. 

Determine the slope and y-intercept of this graph.

mc027-1.jpg
a.
slope: mc027-2.jpg; y-intercept: –1.5
c.
slope: mc027-4.jpg; y-intercept: 1.5
b.
slope: mc027-3.jpg; y-intercept: 1.5
d.
slope: mc027-5.jpg; y-intercept: –1.5
 

 28. 

Write this equation in slope-intercept form: mc028-1.jpg
a.
mc028-2.jpg mc028-3.jpg
c.
mc028-6.jpg mc028-7.jpg
b.
mc028-4.jpg mc028-5.jpg
d.
mc028-8.jpg mc028-9.jpg
 

 29. 

Determine the y-intercept of the graph of this equation: mc029-1.jpg
a.
mc029-2.jpg
c.
mc029-3.jpg
b.
13
d.
3
 

 30. 

Write an equation for the line that passes through U(3, –7) and is perpendicular to the line
mc030-1.jpg.
a.
mc030-2.jpg
c.
mc030-4.jpg
b.
mc030-3.jpg
d.
mc030-5.jpg
 

Short Answer
 

 31. 

Different coloured game pieces can be associated with their lengths, in centimetres. Consider the relation represented by this arrow diagram. Represent the relation as a graph.
sa031-1.jpg

sa031-2.jpg
 

 32. 

a)       Write in function notation: sa032-1.jpg
b)       Write as an equation in two variables: sa032-2.jpg
 

 33. 

A school plans to build a wheelchair ramp from the sidewalk to the front entrance of the school. The slope of the ramp must be sa033-1.jpg. The entrance to the school is 75 cm above the ground. What is the horizontal distance needed for the ramp?
 

 34. 

The slopes of two lines are sa034-1.jpg and sa034-2.jpg. Are the two lines parallel, perpendicular, or neither?
 

 35. 

The slopes of two lines are sa035-1.jpg and sa035-2.jpg. Are the two lines parallel, perpendicular, or neither?
 

 36. 

Describe the graph of the linear function whose equation is sa036-1.jpg.
 

 37. 

i)       Determine the slope and y-intercept of this graph.
ii)       Write an equation to describe the graph.

sa037-1.jpg
 

 38. 

For each equation, identify the slope and y-intercept of its graph.
i)       sa038-1.jpg
ii)       sa038-2.jpg
iii)      sa038-3.jpg
 

 39. 

Determine the slope of the line of this equation: sa039-1.jpg
 

 40. 

a)       Determine the x- and y-intercepts of the graph of this equation: sa040-1.jpg
b)       Graph the equation.

sa040-2.jpg
 

Problem
 

 41. 

For each association below, use the data in the graph to represent a relation as a set of ordered pairs.
a) is the mode of transportation used by this number of students to get to school
b) is the number of students that get to school by

pr041-1.jpgpr041-2.jpg
 

 42. 

A relation contains 5 elements in the domain and 6 elements in the range. Can this relation be a function? Justify your answer.
 

 43. 

Four litres of latex paint covers approximately 37 m2 and costs $52.
a)       Copy and complete this table.

Volume of Paint, p (L)
0
4
8
12
16
Cost, c ($)
0
52
   
Area Covered, A (m2)
0
37
   

b)       Graph the area covered as a function of the volume of paint.
pr043-1.jpg
c)       Graph the area covered as a function of the cost.
pr043-2.jpg
d)       Write the domain and range of the functions in parts b and c.
 

 44. 

Sketch a graph of a function that has domain pr044-1.jpg and range pr044-2.jpg.

pr044-3.jpg
 

 45. 

a)       This is a graph of the function pr045-1.jpg.
            Determine the range value when the domain value is 2.
                                                                   
pr045-2.jpg    


b)       This is the graph of the function pr045-3.jpg.
      Determine the range value when the domain value is 3.
                                                                   
pr045-4.jpg
 

 46. 

A helicopter is travelling toward its destination.

Time (min)
Distance from Destination (mi.)
0
285
20
244
40
203
60
162
80
121

a)       Identify the dependent and independent variables.
b)       Use the table of values to determine whether the relation is linear.
c)       If the relation is linear, determine its rate of change.
d)       Assume the helicopter continues to travel at the same speed. How many more minutes will it take the helicopter to reach its destination? Give your answer to the nearest minute.
 

 47. 

This graph shows the distance, d kilometres, from Beijing, China, to Edmonton, Alberta, as a function of flying time, t hours.
pr047-1.jpg   pr047-2.jpg
a)       Determine the vertical and horizontal intercepts. Write the coordinates of the points where the graph intersects the axes. Describe what the points of intersection represent.
b)      Determine the rate of change. What does it represent?
c)       Write the domain and range?
d)       What is the distance to Edmonton when the plane has been flying for 5 h?
e)       How many hours has the plane been flying when the distance to Edmonton is 6500 km?
 

 48. 

a) Determine the rise, run, and slope of this line segment.

pr048-1.jpg
b) Draw a line segment whose slope is:
      i) zero
      ii) not defined
      iii) the same as the slope of the line segment in part a
pr048-2.jpg
 

 49. 

Reggie says FGHJ is a parallelogram. Ann says FGHJ is a rectangle. Who is correct? Justify your answer.

pr049-1.jpg
 

 50. 

The coordinates of the vertices of DGBW are G(20, 10), B(–35, 20), and W(5, –10). Is DGBW a right triangle? Justify your answer.
 



 
Check Your Work     Start Over