Name: 
 

Math 10 Foundations LG 8 Practice Quiz 5



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

This graph shows distance, d kilometres, as a function of time, t minutes. Determine the vertical and horizontal intercepts.

   mc001-1.jpg 
a.
Vertical intercept: 80
Horizontal intercept: 96
c.
Vertical intercept: 96
Horizontal intercept: 80
b.
Vertical intercept: 64
Horizontal intercept: 96
d.
Vertical intercept: 80
Horizontal intercept: 64
 

 2. 

Each graph below shows distance, d metres, as a function of time, t hours. Which graph has a rate of change of 4 m/h and a vertical intercept of 3 m?
a.

mc002-1.jpg
c.

mc002-3.jpg
b.

mc002-2.jpg
d.

mc002-4.jpg
 

 3. 

Which line segment has slope mc003-1.jpg?
i)
mc003-2.jpg
ii)
mc003-3.jpg
iii)
mc003-4.jpg
iv)
mc003-5.jpg

a.
iii
c.
i
b.
ii
d.
iv
 

 4. 

This table shows the masses, m grams, of different numbers of identical beads, n. Identify the domain.

Number of Beads,
n
Mass of Beads, m
(g)
1
1.56
2
3.12
3
4.68
4
6.24
5
7.80
a.
mc004-1.jpg
b.
mc004-2.jpg
c.
mc004-3.jpg
d.
mc004-4.jpg
 

 5. 

This table shows the cost, C dollars, of different numbers of tickets sold, n. Identify the range.

Number of Tickets,
n
Cost, C
($)
1
12.50
2
25.00
3
37.50
4
50.00
5
62.50
a.
mc005-1.jpg
b.
mc005-2.jpg
c.
mc005-3.jpg
d.
mc005-4.jpg
 

 6. 

For the function mc006-1.jpg, determine x when mc006-2.jpg.
a.
–3
b.
12
c.
–39
d.
–12
 

 7. 

Write mc007-1.jpg as an equation in two variables.
a.
mc007-2.jpg
c.
mc007-4.jpg
b.
mc007-3.jpg
d.
mc007-5.jpg
 

 8. 

Write mc008-1.jpg as an equation in two variables.
a.
mc008-2.jpg
c.
mc008-4.jpg
b.
mc008-3.jpg
d.
mc008-5.jpg
 

 9. 

The function mc009-1.jpg converts a temperature, f degrees Fahrenheit, to C degrees Celsius. Determine mc009-2.jpg to the nearest degree.
a.
38°C
b.
102°C
c.
4°C
d.
–4°C
 

 10. 

Identify the independent variable and the dependent variable for this table of values.

Hours Worked,
h
Gross Pay, P ($)
4
38.00
5
47.50
9
85.50
20
190.00
30
285.00
a.
independent variable: P
dependent variable: h
c.
independent variable: gross pay
dependent variable: hours worked
b.
independent variable: domain
dependent variable: range
d.
independent variable: hours worked
dependent variable: gross pay
 

 11. 

Which of these graphs represents a function?

i)                                                                     ii)
mc011-1.jpg               mc011-2.jpg
iii)                                                                   iv)

mc011-3.jpg               mc011-4.jpg
a.
iv
b.
ii
c.
i
d.
iii
 

 12. 

Determine the domain and range of this graph.
                                                                   
mc012-1.jpg             

a.
mc012-2.jpg
c.
mc012-4.jpg
b.
mc012-3.jpg
d.
mc012-5.jpg
 

 13. 

Determine the domain and range of the graph of this function.
                                                                   
mc013-1.jpg             
a.
mc013-2.jpg
c.
mc013-4.jpg
b.
mc013-3.jpg
d.
mc013-5.jpg
 

 14. 

Determine the domain of this graph.
                                                                   
mc014-1.jpg    
   
a.
mc014-2.jpg
c.
mc014-4.jpg
b.
mc014-3.jpg
d.
mc014-5.jpg
 

 15. 

This graph shows a person’s distance from a starting point, d kilometres, as a function of time, t minutes. Determine the distance from the starting point when the time is 5 min.

     mc015-1.jpg
a.
about 10.1 km
c.
about 1.8 km
b.
about 14.3 km
d.
about 0.6 km
 

 16. 

Determine the slope of the line that passes through G(3, –3) and H(–5, 9).
a.
mc016-1.jpg
c.
mc016-3.jpg
b.
mc016-2.jpg
d.
mc016-4.jpg
 

 17. 

Is the slope of this line segment positive, negative, zero, or not defined?

mc017-1.jpg
a.
negative
c.
positive
b.
not defined
d.
zero
 

 18. 

Determine the steepness of this roof by calculating its slope.
mc018-1.jpg
a.
mc018-2.jpg
c.
mc018-4.jpg
b.
mc018-3.jpg
d.
mc018-5.jpg
 

 19. 

A road rises 9 m for every 60 m measured horizontally. Determine the slope of the road.
a.
mc019-1.jpg
c.
mc019-3.jpg
b.
mc019-2.jpg
d.
mc019-4.jpg
 

 20. 

A skateboard ramp rises 2 ft. for every 7 ft. measured horizontally. What is the run?
a.
mc020-1.jpg
c.
2
b.
7
d.
mc020-2.jpg
 

Short Answer
 

 21. 

This graph shows the speed of a windsurfer, s, as a function of time, t. Why are the points on the graph connected?

sa021-1.jpg
 

 22. 

Determine the vertical and horizontal intercepts of this graph.

sa022-1.jpg
 

 23. 

Determine the rate of change and the vertical intercept of this graph.

sa023-1.jpg
 

 24. 

Determine the slope of this line segment.

sa024-1.jpg
 

 25. 

A school plans to build a wheelchair ramp from the sidewalk to the front entrance of the school. The slope of the ramp must be sa025-1.jpg. The entrance to the school is 75 cm above the ground. What is the horizontal distance needed for the ramp?
 

Problem
 

 26. 

Four litres of latex paint covers approximately 37 m2 and costs $52.
a)       Copy and complete this table.

Volume of Paint, p (L)
0
4
8
12
16
Cost, c ($)
0
52
   
Area Covered, A (m2)
0
37
   

b)       Graph the area covered as a function of the volume of paint.
pr026-1.jpg
c)       Graph the area covered as a function of the cost.
pr026-2.jpg
d)       Write the domain and range of the functions in parts b and c.
 

 27. 

This graph shows the length, l metres, of an object’s shadow as a function of the height of the object, h metres.

pr027-1.jpg

a)       What is the rate of change? What does it represent?
b)       A tree has height 13 m. About how long is its shadow?
c)       The length of the shadow of a building is 45 m. About how tall is the building?
 

 28. 

Sketch a graph of the linear function pr028-1.jpg.
pr028-2.jpg
 

 29. 

This graph shows the distance, d kilometres, from Beijing, China, to Edmonton, Alberta, as a function of flying time, t hours.
pr029-1.jpg   pr029-2.jpg
a)       Determine the vertical and horizontal intercepts. Write the coordinates of the points where the graph intersects the axes. Describe what the points of intersection represent.
b)      Determine the rate of change. What does it represent?
c)       Write the domain and range?
d)       What is the distance to Edmonton when the plane has been flying for 5 h?
e)       How many hours has the plane been flying when the distance to Edmonton is 6500 km?
 

 30. 

Four students determined the slope of the line through S(7, –5) and T(–15, 11). Their answers were: pr030-1.jpg, pr030-2.jpg, pr030-3.jpg, and pr030-4.jpg.
Which answer is correct? How do you know?
 



 
Check Your Work     Start Over