Name: 
 

Math 10 Foundations LG 13 Practice Quiz 2



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Identify two like terms and state how they are related.
–10x + 20y = 460
30x + 60y = 1620
a.
–10x and 30x; by a factor of  –3
c.
30x and 60y; by a factor of  2
b.
–10x and 20y; by a factor of  –2
d.
–10x and 460; by a factor of mc001-1.jpg
 

 2. 

Identify two like terms and state how they are related.
mc002-1.jpg
mc002-2.jpg
a.
7x and –5y; by a factor of  mc002-3.jpg
c.
8x and –4y; by a factor of  mc002-5.jpg
b.
8x and –96; by a factor of mc002-4.jpg
d.
8x and 7x; by a factor of  mc002-6.jpg
 

 3. 

For each equation, identify a number you could multiply each term by to ensure that the coefficients of the variables and the constant term are integers.
(1)      mc003-1.jpgx + mc003-2.jpgy = mc003-3.jpg           
(2)       mc003-4.jpgxmc003-5.jpgy = mc003-6.jpg           
a.
Multiply equation (1) by 35; multiply equation (2) by 12.
b.
Multiply equation (1) by 12; multiply equation (2) by 35.
c.
Multiply equation (1) by 2; multiply equation (2) by 3.
d.
Multiply equation (1) by 3; multiply equation (2) by 2.
 

 4. 

Write an equivalent system with integer coefficients.
mc004-1.jpgx + mc004-2.jpgy = mc004-3.jpg                     
mc004-4.jpgx + 5y = mc004-5.jpg               
a.
mc004-6.jpgx + mc004-7.jpgy = mc004-8.jpg
mc004-9.jpgx + mc004-10.jpgy = mc004-11.jpg
c.
mc004-18.jpgx + mc004-19.jpgy = mc004-20.jpg
mc004-21.jpgx + mc004-22.jpgy = mc004-23.jpg
b.
mc004-12.jpgx + mc004-13.jpgy = mc004-14.jpg
mc004-15.jpgx + mc004-16.jpgy = mc004-17.jpg
d.
mc004-24.jpgx + mc004-25.jpgy = 1
mc004-26.jpgx + mc004-27.jpgy = 1
 

 5. 

The first equation of a linear system is 2x + 3y = 52. Choose a second equation to form a linear system with infinite solutions.
i) 2x + 3y = –260      ii) –10x – 15y = –260       iii) –10x + 3y = –260      iv) –10x + 3y = 255
a.
Equation iii
b.
Equation iv
c.
Equation i
d.
Equation ii
 

 6. 

Use substitution to solve this problem:
Tanukah invested a total of $4350 in two bonds. He invested in one bond at an annual interest rate of 6% and in another bond at an annual interest rate of 8%. After one year, the total interest earned was $324.00. How much money did Tanukah invest in each bond?

a.
$3150 at 6%,
$1200 at 8%
b.
$1200 at 6%,
$3150 at 8%
c.
$3650 at 6%,
$700 at 8%
d.
$700 at 6%,
$3650 at 8%
 

 7. 

The solution of this linear system is (–3, y). Determine the value of y.
x – mc007-1.jpgy = mc007-2.jpg                     
mc007-3.jpgx – y = mc007-4.jpg         
a.
20
b.
30
c.
10
d.
40
 

 8. 

The solution of this linear system is (–28, y). Determine the value of y.
mc008-1.jpgx – mc008-2.jpgy = mc008-3.jpg                     
mc008-4.jpgx – 4y = mc008-5.jpg     
a.
21
b.
26
c.
36
d.
16
 

 9. 

Use an elimination strategy to solve this linear system.
mc009-1.jpg
mc009-2.jpg
a.
mc009-3.jpg and mc009-4.jpg
c.
mc009-7.jpg and mc009-8.jpg
b.
mc009-5.jpg and mc009-6.jpg
d.
mc009-9.jpg and mc009-10.jpg
 

 10. 

Use an elimination strategy to solve this linear system.
mc010-1.jpg
mc010-2.jpg
a.
mc010-3.jpg and mc010-4.jpg
c.
mc010-7.jpg and mc010-8.jpg
b.
mc010-5.jpg and mc010-6.jpg
d.
mc010-9.jpg and mc010-10.jpg
 

 11. 

Use an elimination strategy to solve this linear system.
mc011-1.jpg
mc011-2.jpg
a.
mc011-3.jpg and mc011-4.jpg
c.
mc011-7.jpg and mc011-8.jpg
b.
mc011-5.jpg and mc011-6.jpg
d.
mc011-9.jpg and mc011-10.jpg
 

 12. 

Model this situation with a linear system:
At a campground, 5 large tanks and 5 small tanks contained 3200 L of drinking water. When one of the small tanks was replaced with a large tank, there was 3400 L of drinking water.
a.
mc012-1.jpg and mc012-2.jpg
c.
mc012-5.jpg and mc012-6.jpg
b.
mc012-3.jpg and mc012-4.jpg
d.
mc012-7.jpg and mc012-8.jpg
 

 13. 

Use an elimination strategy to solve this linear system.
mc013-1.jpg
mc013-2.jpg
a.
mc013-3.jpg and mc013-4.jpg
c.
mc013-7.jpg and mc013-8.jpg
b.
mc013-5.jpg and mc013-6.jpg
d.
mc013-9.jpg and mc013-10.jpg
 

 14. 

Use an elimination strategy to solve this linear system.
mc014-1.jpg
mc014-2.jpg
a.
mc014-3.jpg and mc014-4.jpg
c.
mc014-7.jpg and mc014-8.jpg
b.
mc014-5.jpg and mc014-6.jpg
d.
mc014-9.jpg and mc014-10.jpg
 

 15. 

Which linear system is modelled by these balance scales? (Each small square on the right side of the balance scales represents 2 kg.)
mc015-1.jpgmc015-2.jpg
a.
mc015-3.jpg and mc015-4.jpg
c.
mc015-7.jpg and mc015-8.jpg
b.
mc015-5.jpg and mc015-6.jpg
d.
mc015-9.jpg and mc015-10.jpg
 

 16. 

Which linear system is modelled by these balance scales? (Each small square on the right side of the balance scales represents 2 kg.)
mc016-1.jpgmc016-2.jpg
a.
mc016-3.jpg and mc016-4.jpg
c.
mc016-7.jpg and mc016-8.jpg
b.
mc016-5.jpg and mc016-6.jpg
d.
mc016-9.jpg and mc016-10.jpg
 

 17. 

Without graphing, determine the slope of the graph of the equation:
3x + 4y = 11
a.
mc017-1.jpg
b.
mc017-2.jpg
c.
4
d.
3
 

 18. 

Without graphing, determine which of these equations represent parallel lines.
i) –6x + 6y = 12
ii) –4x + 6y = 12
iii)
–2x + 6y = 12
iv)
–6x + 6y = 14
a.
ii and iii
b.
i and ii
c.
i and iv
d.
i and iii
 

 19. 

Determine the number of solutions of the linear system:
14x + 7y = 315
16x – 2y = 610
a.
no solution
c.
two solutions
b.
one solution
d.
infinite solutions
 

 20. 

For what value of k does the linear system below have infinite solutions?
mc020-1.jpgx + y = 14
kx + 2y = 28
a.
28
b.
mc020-2.jpg
c.
mc020-3.jpg
d.
0
 

Short Answer
 

 21. 

Identify two like terms and say how they are related.
6x + 4y = –258
–3x + 5y = 45
     
 

 22. 

Create a linear system to model this situation. Then use substitution to solve the linear system to solve the problem.

Bobbie has been saving dimes and quarters to buy a new toy. She has a total of 28 dimes and quarters, with a value of $4.30. How many of each type of coin does Bobbie have?
 

 23. 

Model this situation with a linear system:
The perimeter of a rectangle is 234 ft. When its length is doubled, the perimeter increases by 58 ft.
 

 24. 

Determine the number of solutions of this linear system.
7x – 3y = 43
7x – 3y = 13
 

 25. 

For what values of k does the linear system below have:
a)      infinite solutions?
b)      one solution?
c)       no solution?
sa025-1.jpgx + y = 16
kx + 3y = 48
 

Problem
 

 26. 

Use a substitution strategy to solve the following problem.

Vivian invested a total of $5600 in two bonds. She invested in one bond at 2% per annum and in another bond at 5% per annum. In one year, the interest earned on each bond was the same. How much did Vivian invest in each bond?
 

 27. 

Use an elimination strategy to solve this linear system. Verify the solution.
pr027-1.jpg
pr027-2.jpg
 

 28. 

Use the equation pr028-1.jpg as an equation in three different linear systems. Write a second equation so that each system has a different number of solutions. Explain what you did for each system.
 

 29. 

Explain what happens when you try to solve this linear system using an elimination strategy. What does this tell you about the graphs of these equations?
pr029-1.jpg
pr029-2.jpg
 

 30. 

Determine the number of solutions of this linear system.
pr030-1.jpg
pr030-2.jpg
 



 
Check Your Work     Start Over