Name: 
 

Math 10 Foundations LG 13 Practice Quiz 3



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Identify two like terms and state how they are related.
–10x + 20y = 460
30x + 60y = 1620
a.
–10x and 30x; by a factor of  –3
c.
30x and 60y; by a factor of  2
b.
–10x and 20y; by a factor of  –2
d.
–10x and 460; by a factor of mc001-1.jpg
 

 2. 

For each equation, identify a number you could multiply each term by to ensure that the coefficients of the variables and the constant term are integers.
(1)      mc002-1.jpgx + mc002-2.jpgy = mc002-3.jpg           
(2)       mc002-4.jpgxmc002-5.jpgy = mc002-6.jpg           
a.
Multiply equation (1) by 35; multiply equation (2) by 12.
b.
Multiply equation (1) by 12; multiply equation (2) by 35.
c.
Multiply equation (1) by 2; multiply equation (2) by 3.
d.
Multiply equation (1) by 3; multiply equation (2) by 2.
 

 3. 

Write an equivalent system with integer coefficients.
mc003-1.jpgx + mc003-2.jpgy = mc003-3.jpg                     
mc003-4.jpgx + 5y = mc003-5.jpg               
a.
mc003-6.jpgx + mc003-7.jpgy = mc003-8.jpg
mc003-9.jpgx + mc003-10.jpgy = mc003-11.jpg
c.
mc003-18.jpgx + mc003-19.jpgy = mc003-20.jpg
mc003-21.jpgx + mc003-22.jpgy = mc003-23.jpg
b.
mc003-12.jpgx + mc003-13.jpgy = mc003-14.jpg
mc003-15.jpgx + mc003-16.jpgy = mc003-17.jpg
d.
mc003-24.jpgx + mc003-25.jpgy = 1
mc003-26.jpgx + mc003-27.jpgy = 1
 

 4. 

Write an equivalent linear system where both equations have the same y-coefficients.
mc004-1.jpg
mc004-2.jpg
a.
mc004-3.jpg and mc004-4.jpg
c.
mc004-7.jpg and mc004-8.jpg
b.
mc004-5.jpg and mc004-6.jpg
d.
mc004-9.jpg and mc004-10.jpg
 

 5. 

The first equation of a linear system is –6x + 12y = –42. Choose a second equation to form a linear system with no solution.
i) –6x + 12y = 126      ii) 18x – 36y = 126       iii) 18x + 12y = 126      iv) 18x + 36y = 0
a.
Equation iv
b.
Equation ii
c.
Equation iii
d.
Equation i
 

 6. 

Use substitution to solve this linear system.
x = 2y – 56     
5x + 13y = 410
a.
(4, –30)
b.
(–4, 30)
c.
(4, 30)
d.
(–4, –30)
 

 7. 

Use substitution to solve this linear system:
xy = 18
mc007-1.jpgx + mc007-2.jpgy = mc007-3.jpg
a.
x = 4; y = 18
b.
x = –14; y = –14
c.
x = 4; y = –14
d.
x = 4; y = 4
 

 8. 

The solution of this linear system is (–28, y). Determine the value of y.
mc008-1.jpgx – mc008-2.jpgy = mc008-3.jpg                     
mc008-4.jpgx – 4y = mc008-5.jpg     
a.
21
b.
26
c.
36
d.
16
 

 9. 

Use an elimination strategy to solve this linear system.
mc009-1.jpg
mc009-2.jpg
a.
mc009-3.jpg and mc009-4.jpg
c.
mc009-7.jpg and mc009-8.jpg
b.
mc009-5.jpg and mc009-6.jpg
d.
mc009-9.jpg and mc009-10.jpg
 

 10. 

Use an elimination strategy to solve this linear system.
mc010-1.jpg
mc010-2.jpg
a.
mc010-3.jpg and mc010-4.jpg
c.
mc010-7.jpg and mc010-8.jpg
b.
mc010-5.jpg and mc010-6.jpg
d.
mc010-9.jpg and mc010-10.jpg
 

 11. 

Use an elimination strategy to solve this linear system.
mc011-1.jpg
mc011-2.jpg
a.
mc011-3.jpg and mc011-4.jpg
c.
mc011-7.jpg and mc011-8.jpg
b.
mc011-5.jpg and mc011-6.jpg
d.
mc011-9.jpg and mc011-10.jpg
 

 12. 

Model this situation with a linear system:
Frieda has a 13% silver alloy and a 31% silver alloy. Frieda wants to make 26 kg of an alloy that is 47% silver.
a.
mc012-1.jpg and mc012-2.jpg
c.
mc012-5.jpg and mc012-6.jpg
b.
mc012-3.jpg and mc012-4.jpg
d.
mc012-7.jpg and mc012-8.jpg
 

 13. 

Model this situation with a linear system:
At a campground, 5 large tanks and 5 small tanks contained 3200 L of drinking water. When one of the small tanks was replaced with a large tank, there was 3400 L of drinking water.
a.
mc013-1.jpg and mc013-2.jpg
c.
mc013-5.jpg and mc013-6.jpg
b.
mc013-3.jpg and mc013-4.jpg
d.
mc013-7.jpg and mc013-8.jpg
 

 14. 

Model this situation with a linear system:
Nate borrowed $10 000 for his university tuition. He borrowed part of the money at an annual interest rate of 2.4% and the rest of the money at an annual interest rate of 4.5%. His total annual interest payment is $250.50.
a.
mc014-1.jpg and mc014-2.jpg
b.
mc014-3.jpg and mc014-4.jpg
c.
mc014-5.jpg and mc014-6.jpg
d.
mc014-7.jpg and mc014-8.jpg
 

 15. 

Without graphing, determine the slope of the graph of the equation:
3x + 4y = 11
a.
mc015-1.jpg
b.
mc015-2.jpg
c.
4
d.
3
 

 16. 

Without graphing, determine which of these equations represent parallel lines.
i) –6x + 6y = 12
ii) –4x + 6y = 12
iii)
–2x + 6y = 12
iv)
–6x + 6y = 14
a.
ii and iii
b.
i and ii
c.
i and iv
d.
i and iii
 

 17. 

Without graphing, determine the equation whose graph intersects the graph of –6x + 3y = 11
exactly once.
i) –6x + 3y = 13
ii) –24x + 12y = 44
iii)
–4x + 3y = 11
a.
iii
b.
none
c.
ii
d.
i
 

 18. 

Determine the number of solutions of the linear system:
14x + 7y = 315
16x – 2y = 610
a.
no solution
c.
two solutions
b.
one solution
d.
infinite solutions
 

 19. 

Determine the number of solutions of the linear system:
5x + 7y = 76
–25x – 35y = –380
a.
2 solutions
c.
infinite solutions
b.
one solution
d.
no solution
 

 20. 

Two lines in a linear system have the same slope, but different y-intercepts.
How many solutions does the linear system have?
a.
two solutions
c.
infinite solutions
b.
no solution
d.
one solution
 

Short Answer
 

 21. 

Fill in the each blank below with the correct integer.
System A
sa021-1.jpg -____:

sa021-2.jpg-____:
System B
7x + 6y = –376

–4x – 6y = 256
           
 

 22. 

Identify two like terms and say how they are related.
6x + 4y = –258
–3x + 5y = 45
     
 

 23. 

Determine the number of solutions of this linear system.
7x – 3y = 43
7x – 3y = 13
 

 24. 

Determine the number of solutions of this linear system.
15x + 30y = –240
17x + 21y = 53
 

 25. 

For what values of k does the linear system below have:
a)      infinite solutions?
b)      one solution?
c)       no solution?
sa025-1.jpgx + y = 16
kx + 3y = 48
 

Problem
 

 26. 

Use a substitution strategy to solve the following problem.

Vivian invested a total of $5600 in two bonds. She invested in one bond at 2% per annum and in another bond at 5% per annum. In one year, the interest earned on each bond was the same. How much did Vivian invest in each bond?
 

 27. 

Use a substitution strategy to solve the following problem.

Two isosceles triangles have the same base length. The equal sides of one of the triangles
are 3.25 times as long as the equal sides of the other. Find the lengths of the sides of the triangles when their perimeters are 38 cm and 96.5 cm.
 

 28. 

Use an elimination strategy to solve this linear system. Verify the solution.
pr028-1.jpg
pr028-2.jpg
 

 29. 

Explain what happens when you try to solve this linear system using a substitution strategy. What does this indicate about the graphs of these equations?
pr029-1.jpg
pr029-2.jpg
 

 30. 

Determine the number of solutions of this linear system.
pr030-1.jpg
pr030-2.jpg
 



 
Check Your Work     Start Over