Name: 
 

Math 10 Foundations LG 13 Practice Quiz 5



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Identify two like terms and state how they are related.
–10x + 20y = 460
30x + 60y = 1620
a.
–10x and 30x; by a factor of  –3
c.
30x and 60y; by a factor of  2
b.
–10x and 20y; by a factor of  –2
d.
–10x and 460; by a factor of mc001-1.jpg
 

 2. 

Write an equivalent system with integer coefficients.
mc002-1.jpgx + mc002-2.jpgy = mc002-3.jpg                     
mc002-4.jpgx + 5y = mc002-5.jpg               
a.
mc002-6.jpgx + mc002-7.jpgy = mc002-8.jpg
mc002-9.jpgx + mc002-10.jpgy = mc002-11.jpg
c.
mc002-18.jpgx + mc002-19.jpgy = mc002-20.jpg
mc002-21.jpgx + mc002-22.jpgy = mc002-23.jpg
b.
mc002-12.jpgx + mc002-13.jpgy = mc002-14.jpg
mc002-15.jpgx + mc002-16.jpgy = mc002-17.jpg
d.
mc002-24.jpgx + mc002-25.jpgy = 1
mc002-26.jpgx + mc002-27.jpgy = 1
 

 3. 

Write an equivalent system with integer coefficients.
mc003-1.jpgx + mc003-2.jpgy = mc003-3.jpg                     
mc003-4.jpgx + 5y = mc003-5.jpg               
a.
mc003-6.jpgx + mc003-7.jpgy = 1
mc003-8.jpgx + mc003-9.jpgy = 1
c.
mc003-16.jpgx + mc003-17.jpgy = mc003-18.jpg
mc003-19.jpgx + mc003-20.jpgy = mc003-21.jpg
b.
mc003-10.jpgx + mc003-11.jpgy = mc003-12.jpg
mc003-13.jpgx + mc003-14.jpgy = mc003-15.jpg
d.
mc003-22.jpgx + mc003-23.jpgy = mc003-24.jpg
mc003-25.jpgx + mc003-26.jpgy = mc003-27.jpg
 

 4. 

For each equation, choose a divisor that is an integer. Then create an equivalent linear system by dividing each term of the equation by the divisor.
12x – 8y = 1480     
20x + 65y = 1370     
a.
x – 3y = 370     
x + 13y = 274
c.
3x – 2y = 370     
4x + 13y = 274     
b.
2x – 3y = 370     
4x + 13y = 274
d.
3xy = 370     
4x + y = 274
 

 5. 

The first equation of a linear system is –6x + 12y = –42. Choose a second equation to form a linear system with no solution.
i) –6x + 12y = 126      ii) 18x – 36y = 126       iii) 18x + 12y = 126      iv) 18x + 36y = 0
a.
Equation iv
b.
Equation ii
c.
Equation iii
d.
Equation i
 

 6. 

Use substitution to solve this linear system.
x = 2y – 56     
5x + 13y = 410
a.
(4, –30)
b.
(–4, 30)
c.
(4, 30)
d.
(–4, –30)
 

 7. 

Use substitution to solve this linear system.
x = 4 + y
mc007-1.jpgx + 16y = –264 
a.
(–14, –14)
b.
(–10, –10)
c.
(–10, –14)
d.
(–14, –10)
 

 8. 

Use substitution to solve this problem:
Tanukah invested a total of $4350 in two bonds. He invested in one bond at an annual interest rate of 6% and in another bond at an annual interest rate of 8%. After one year, the total interest earned was $324.00. How much money did Tanukah invest in each bond?

a.
$3150 at 6%,
$1200 at 8%
b.
$1200 at 6%,
$3150 at 8%
c.
$3650 at 6%,
$700 at 8%
d.
$700 at 6%,
$3650 at 8%
 

 9. 

Use substitution to solve this problem:
Wai Sen scored 85% on part A of a math test and 95% on part B of the math test. Her total mark for the test was 70. The total mark possible for the test was 78.
How many marks is each part worth?
a.
Part A: 37 marks; part B: 37 marks
c.
Part A: 37 marks; part B: 41 marks
b.
Part A: 41 marks; part B: 41 marks
d.
Part A: 41 marks; part B: 37 marks
 

 10. 

Use substitution to solve this linear system:
xy = 18
mc010-1.jpgx + mc010-2.jpgy = mc010-3.jpg
a.
x = 4; y = 18
b.
x = –14; y = –14
c.
x = 4; y = –14
d.
x = 4; y = 4
 

 11. 

Use an elimination strategy to solve this linear system.
mc011-1.jpg
mc011-2.jpg
a.
mc011-3.jpg and mc011-4.jpg
c.
mc011-7.jpg and mc011-8.jpg
b.
mc011-5.jpg and mc011-6.jpg
d.
mc011-9.jpg and mc011-10.jpg
 

 12. 

Use an elimination strategy to solve this linear system.
mc012-1.jpg
mc012-2.jpg
a.
mc012-3.jpg and mc012-4.jpg
c.
mc012-7.jpg and mc012-8.jpg
b.
mc012-5.jpg and mc012-6.jpg
d.
mc012-9.jpg and mc012-10.jpg
 

 13. 

Model this situation with a linear system:
Frieda has a 13% silver alloy and a 31% silver alloy. Frieda wants to make 26 kg of an alloy that is 47% silver.
a.
mc013-1.jpg and mc013-2.jpg
c.
mc013-5.jpg and mc013-6.jpg
b.
mc013-3.jpg and mc013-4.jpg
d.
mc013-7.jpg and mc013-8.jpg
 

 14. 

Model this situation with a linear system:
At a campground, 5 large tanks and 5 small tanks contained 3200 L of drinking water. When one of the small tanks was replaced with a large tank, there was 3400 L of drinking water.
a.
mc014-1.jpg and mc014-2.jpg
c.
mc014-5.jpg and mc014-6.jpg
b.
mc014-3.jpg and mc014-4.jpg
d.
mc014-7.jpg and mc014-8.jpg
 

 15. 

Use an elimination strategy to solve this linear system.
mc015-1.jpg
mc015-2.jpg
a.
mc015-3.jpg and mc015-4.jpg
c.
mc015-7.jpg and mc015-8.jpg
b.
mc015-5.jpg and mc015-6.jpg
d.
mc015-9.jpg and mc015-10.jpg
 

 16. 

Which linear system is modelled by these balance scales? (Each small square on the right side of the balance scales represents 2 kg.)
mc016-1.jpgmc016-2.jpg
a.
mc016-3.jpg and mc016-4.jpg
c.
mc016-7.jpg and mc016-8.jpg
b.
mc016-5.jpg and mc016-6.jpg
d.
mc016-9.jpg and mc016-10.jpg
 

 17. 

Model this situation with a linear system:
Nate borrowed $10 000 for his university tuition. He borrowed part of the money at an annual interest rate of 2.4% and the rest of the money at an annual interest rate of 4.5%. His total annual interest payment is $250.50.
a.
mc017-1.jpg and mc017-2.jpg
b.
mc017-3.jpg and mc017-4.jpg
c.
mc017-5.jpg and mc017-6.jpg
d.
mc017-7.jpg and mc017-8.jpg
 

 18. 

Determine the number of solutions of the linear system:
14x – 5y = 123
14x – 5y = 73
a.
no solution
c.
two solutions
b.
infinite solutions
d.
one solution
 

 19. 

Determine the number of solutions for the linear system that models this problem:

Find two numbers such that twice the first number is 3 greater than three times the second number, and three times the first number is 22 greater than twice the second number.
a.
two solutions
c.
no solution
b.
one solution
d.
infinite solutions
 

 20. 

For what value of k does the linear system below have infinite solutions?
mc020-1.jpgx + y = 14
kx + 2y = 28
a.
28
b.
mc020-2.jpg
c.
mc020-3.jpg
d.
0
 

Short Answer
 

 21. 

Fill in the each blank below with the correct integer.
System A
sa021-1.jpg -____:

sa021-2.jpg-____:
System B
7x + 6y = –376

–4x – 6y = 256
           
 

 22. 

Model this situation with a linear system:
A recycling depot pays 0.06¢ for a small can and 0.23¢ for a large can. Chara took 70 cans to the recycling depot and her total refund was $22.35.
 

 23. 

Determine the number of solutions of this linear system.
7x – 3y = 43
7x – 3y = 13
 

 24. 

Determine the number of solutions of this linear system.
15x + 30y = –240
17x + 21y = 53
 

 25. 

Determine the number of solutions for the linear system that models this problem:

Erica paid $6.00 for a bottle of water and 3 granola bars. Her friend paid $12.00 for 2 bottles of water and 6 granola bars. How much does a bottle of water cost?
 

Problem
 

 26. 

a)      Write a linear system to model the situation:
For the school play, the cost of one adult ticket is $6 and the cost of one student ticket is $4. Twice as many student tickets as adult tickets were sold. The total receipts were $2016.
b)       Use substitution to solve the related problem:
How many of each type of ticket were sold?
 

 27. 

Use an elimination strategy to solve this linear system. Verify the solution.
pr027-1.jpg
pr027-2.jpg
 

 28. 

Cashew nuts sell for $21.00/kg. Brazil nuts sell for $15.00/kg. A distributor sold a total of 120 kg of cashew nuts and Brazil nuts for $2244. What mass of each type of nut was sold?
 

 29. 

Use an elimination strategy to solve this linear system. Verify the solution.
pr029-1.jpg
pr029-2.jpg
 

 30. 

Explain what happens when you try to solve this linear system using a substitution strategy. What does this indicate about the graphs of these equations?
pr030-1.jpg
pr030-2.jpg
 



 
Check Your Work     Start Over