Name: 
 

Math 12 Pre-Calc LG 5 Practice Quiz #1



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Which graph represents an odd-degree polynomial function with two x-intercepts?
A
mc001-1.jpg
C
mc001-3.jpg
B
mc001-2.jpg
D
mc001-4.jpg
 

 2. 

Which graph represents an even-degree polynomial function with a y-intercept of 9?
A
mc002-1.jpg
C
mc002-3.jpg
B
mc002-2.jpg
D
mc002-4.jpg
 

 3. 

How many x-intercepts are possible for the polynomial function mc003-1.jpg?
A
4
C
3
B
5
D
1
 

 4. 

If mc004-1.jpg is divided by mc004-2.jpg, then the restriction on x is
A
mc004-3.jpg mc004-4.jpg
C
mc004-7.jpg mc004-8.jpg
B
mc004-5.jpg mc004-6.jpg
D
mc004-9.jpg mc004-10.jpg
 

 5. 

What is the remainder when mc005-1.jpg is divided by mc005-2.jpg?
A
1070
C
962
B
–1070
D
–962
 

 6. 

If mc006-1.jpg is divided by mc006-2.jpg, what is the remainder?
A
–160
C
160
B
–320
D
320
 

 7. 

If mc007-1.jpg is divided by mc007-2.jpg, what is the remainder?
A
P(x – 4)
C
P(x + 4)
B
P(4)
D
P(–4)
 

 8. 

Determine the value of k so that mc008-1.jpg is a factor of mc008-2.jpg.
A
k = –1
C
k = 14
B
k = –14
D
k = 1
 

 9. 

One root of the equation mc009-1.jpg is
A
–3
C
9
B
3
D
–5
 

 10. 

The graph that corresponds to the function mc010-1.jpg is
A
mc010-2.jpg
C
mc010-4.jpg
B
mc010-3.jpg
D
mc010-5.jpg
 

Short Answer
 

 1. 

a) Use long division to divide x3 + 3x2 – 7 by x + 2. Express the result in quotient form.
b) Identify any restrictions on the variable.
c) Write the corresponding statement that can be used to check the division.
d) Verify your answer.
 

 2. 

Factor fully.
a)n3 – 4n2 – 4n
b) 12x3 + 16x2 – 5x – 3
c) 2x4 + x3 – 10x – 5
 

 3. 

Solve.
a) 3x3 + 2x2 – 8x + 3 = 0
b) 2x3 + x2 – 10x – 5 = 0
c) 5x4 = 7x2 – 2
 

Problem
 

 1. 

a) If x + 1 is a factor of ax4 + bx2 + c, what is the value of a + b + c?
b) Decide if x + 1 is a factor of each polynomial. Explain your reasoning.
      i) 3x4 + 3x2 – 6
      ii) 17x4 – 10x2 – 7
      iii) x4 + x2 + 1
 

 2. 

Maria is designing a series of stationery trays for holding paper and envelopes. Each tray starts as a rectangular sheet of metal from which identical squares are cut from the four corners. The resulting rectangular flaps are then folded up and welded to produce an open-topped rectangular tray. What size square should Maria cut from a rectangular sheet of metal 15 cm by 25 cm in order to produce a tray with a volume of 476 cm3? Round to the nearest hundredth of a centimetre, if necesary.
 

 3. 

Determine an equation in factored form for the polynomial function represented by the graph
pr003-1.jpg
 



 
Check Your Work     Start Over