Name: 
 

Math 12 Pre-Calc LG 5 Practice Quiz #4



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Which of the following is a polynomial function?
A
mc001-1.jpg
C
mc001-3.jpg
B
mc001-2.jpg
D
mc001-4.jpg
 

 2. 

Which graph represents an even-degree polynomial function with a y-intercept of 4?
A
mc002-1.jpg
C
mc002-3.jpg
B
mc002-2.jpg
D
mc002-4.jpg
 

 3. 

How many x-intercepts are possible for the polynomial function mc003-1.jpg?
A
5
C
1
B
3
D
4
 

 4. 

If mc004-1.jpg is divided by mc004-2.jpg, what is the remainder?
A
–151
C
151
B
–49
D
49
 

 5. 

If mc005-1.jpg is divided by mc005-2.jpg, what is the remainder?
A
P(x + 5)
C
P(5)
B
P(x – 5)
D
P(–5)
 

 6. 

A factor of mc006-1.jpg is     
A
mc006-2.jpg
C
x – 5
B
mc006-3.jpg
D
x – 8
 

 7. 

Determine the value of k so that mc007-1.jpg is a factor of mc007-2.jpg.
A
k = –1
C
k = –6
B
k = 1
D
k = 6
 

 8. 

The fully factored form of mc008-1.jpg is
A
mc008-2.jpg
C
mc008-4.jpg
B
mc008-3.jpg
D
mc008-5.jpg
 

 9. 

What is the maximum number of real distinct roots that a quadratic equation can have?
A
infinitely many
C
2
B
3
D
1
 

 10. 

Given the function mc010-1.jpg, what are the parameters of the transformed function
y = mc010-2.jpgmc010-3.jpg and what is the effect of each parameter on the graph of the original function?
A
a = mc010-4.jpg, vertical stretch about the x-axis by a factor of mc010-5.jpg
h = 7, horizontal translation 7 units right
k = 7, vertical translation 7 units right
B
a = mc010-6.jpg, vertical stretch about the x-axis by a factor of mc010-7.jpg
h = 7, horizontal translation 7 units right
k = 7, vertical translation 7 units right
C
a = mc010-8.jpg, vertical stretch about the x-axis by a factor of mc010-9.jpg
h = 7, horizontal translation 7 units right
k = 7, vertical translation 7 units right
D
a = mc010-10.jpg, vertical stretch about the x-axis by a factor of mc010-11.jpg
h = 7, horizontal translation 7 units left
k = 7, vertical translation 7 units down
 

Short Answer
 

 1. 

Factor fully.
a)n3 – 4n2 – 4n
b) 12x3 + 16x2 – 5x – 3
c) 2x4 + x3 – 10x – 5
 

 2. 

Factor fully.
a) x2(x – 2)(x + 2) + 3x + 6
b) 16x4 – (x + 1)2
 

 3. 

Determine the degree of the polynomial function (linear, quadratic, cubic, etc.) that the table of values represents.

x
y
–3
 
7
 
–2
 
9
 
–1
 
5
 
0
 
1
 
1
 
3
 
2
 
17
 
3
 
49
 
 

Problem
 

 1. 

The polynomial 6x3 + mx2 + nx – 5 has a factor of x + 1. When divided by x – 1, the remainder is –4. What are the values of m and n?
 

 2. 

a) If x + 1 is a factor of ax4 + bx2 + c, what is the value of a + b + c?
b) Decide if x + 1 is a factor of each polynomial. Explain your reasoning.
      i) 3x4 + 3x2 – 6
      ii) 17x4 – 10x2 – 7
      iii) x4 + x2 + 1
 

 3. 

Prove that x2 + 5x + 6 is a factor of x4 + 5x3 + 2x2 – 20x – 24.
 



 
Check Your Work     Start Over