Name: 
 

Math 12 Pre-Calculus LG 6 Unit 2 Practice Test #4



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Compared to the graph of the base function mc001-1.jpg, the graph of the function mc001-2.jpg is translated
A
7 units to the right
C
7 units up
B
7 units to the left
D
7 units down
 

 2. 

Compared to the graph of the base function mc002-1.jpg, the graph of the function mc002-2.jpg is translated
A
9 units down
C
9 units right
B
9 units left
D
9 units up
 

 3. 

Given the function mc003-1.jpg with a domain of mc003-2.jpg and a range of mc003-3.jpg, which of the following best describes the vertical and horizontal translations with respect to the graph of mc003-4.jpg?
A
3 units to the right and 6 units up
C
3 units to the right and 6 units down
B
6 units to the right and 3 units down
D
6 units to the right and 3 units up
 

 4. 

Compared to the graph of the base function mc004-1.jpg, the graph of the function mc004-2.jpg is translated
A
8 units to the left and 4 units down
C
4 units to the right and 8 units up
B
4 units to the left and 8 units down
D
8 units to the right and 4 units up
 

 5. 

What is the equation of the radical function shown in the graph below?
mc005-1.jpg
A
mc005-2.jpg
C
mc005-4.jpg
B
mc005-3.jpg
D
mc005-5.jpg
 

 6. 

What are the coordinates of the invariant point(s) when the function mc006-1.jpg is reflected in the x-axis?
A
(16, –4)
C
(0, 16)
B
(0, –4)
D
(16, 0)
 

 7. 

What is the solution to the radical equation mc007-1.jpg?
A
1
C
–17
B
17
D
25
 

 8. 

Which graph represents an odd-degree polynomial function with two x-intercepts?
A
mc008-1.jpg
C
mc008-3.jpg
B
mc008-2.jpg
D
mc008-4.jpg
 

 9. 

How many x-intercepts are possible for the polynomial function mc009-1.jpg?
A
4
C
2
B
3
D
1
 

 10. 

What is the restriction on x if mc010-1.jpg is divided by mc010-2.jpg?
A
x mc010-3.jpg –8
C
x mc010-5.jpg –6
B
x mc010-4.jpg 3
D
x mc010-6.jpg –2
 

 11. 

If mc011-1.jpg is divided by mc011-2.jpg, then the restriction on x is
A
mc011-3.jpg mc011-4.jpg
C
mc011-7.jpg mc011-8.jpg
B
mc011-5.jpg mc011-6.jpg
D
mc011-9.jpg mc011-10.jpg
 

 12. 

If mc012-1.jpg is divided by mc012-2.jpg, what is the remainder?
A
–347
C
565
B
347
D
–565
 

 13. 

If mc013-1.jpg is divided by mc013-2.jpg, what is the remainder?
A
P(6)
C
P(x + 6)
B
P(–6)
D
P(x – 6)
 

 14. 

When mc014-1.jpg is divided by mc014-2.jpg, the remainder is
A
P(4) = 196
C
mc014-4.jpgx2 mc014-5.jpgx mc014-6.jpg
B
mc014-3.jpg
D
mc014-7.jpg
 

 15. 

One root of the equation mc015-1.jpg is
A
–7
C
6
B
5
D
–5
 

Short Answer
 

 1. 

Sketch the graph of sa001-1.jpg and use it to sketch the graph of sa001-2.jpg.
 

 2. 

Solve the equation sa002-1.jpg graphically.
 

 3. 

Factor fully.
a) x3 + 6x2 + 11x + 6
b) 4x3 – 11x2 – 3x
c) x4 – 81
 

 4. 

Factor fully.
a)n3 – 4n2 – 4n
b) 12x3 + 16x2 – 5x – 3
c) 2x4 + x3 – 10x – 5
 

 5. 

Factor  2x3 + 5x2 – 14x – 8 fully
 

Problem
 

 1. 

Graph the functions below, and then identify and compare their domains and ranges.
pr001-1.jpg and pr001-2.jpg
 

 2. 

Sun-Eui, a graduate student, is using the function pr002-1.jpg to model the number of flowers a new hybrid bee can pollinate. For the function, N represents the number, in thousands, of flowers pollinated and t represents the time, in days.
a) If there are 10 000 flowers, how long will it take to pollinate all of the flowers?
b) Sun-Eui believes that the second generation of bees can reduce the time to pollinate the flowers by half by changing the function to pr002-2.jpg. Is she correct? Justify your reasoning.
c) Should Sun-Eui continue with the project?
 

 3. 

The polynomial 6x3 + mx2 + nx – 5 has a factor of x + 1. When divided by x – 1, the remainder is –4. What are the values of m and n?
 

 4. 

a) If x + 1 is a factor of ax4 + bx2 + c, what is the value of a + b + c?
b) Decide if x + 1 is a factor of each polynomial. Explain your reasoning.
      i) 3x4 + 3x2 – 6
      ii) 17x4 – 10x2 – 7
      iii) x4 + x2 + 1
 

 5. 

Prove that x2 + 5x + 6 is a factor of x4 + 5x3 + 2x2 – 20x – 24.
 



 
Check Your Work     Start Over