Name: 
 

Math 12 Pre-Calc LG 8 Practice Quiz #1



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Which function, where x is in radians, is represented by the graph shown below?

mc001-1.jpg
A.
mc001-2.jpg
C.
mc001-4.jpg
B.
mc001-3.jpg
D.
mc001-5.jpg
 

 2. 

The period (in degrees) of the graph of mc002-1.jpg is
A.
mc002-2.jpg
C.
mc002-4.jpg
B.
mc002-3.jpg
D.
mc002-5.jpg
 

 3. 

Which function is represented by the graph shown below, where x is in degrees?
mc003-1.jpg
A.
y = sin(mc003-2.jpgx)
C.
y = cos(mc003-4.jpgx)
B.
y =mc003-3.jpg cos(x)
D.
y =mc003-5.jpg sin(x)
 

 4. 

What is the period of the sinusoidal function mc004-1.jpg?
A.
mc004-2.jpgp
C.
mc004-4.jpgp
B.
mc004-3.jpgp
D.
mc004-5.jpgp
 

 5. 

Which graph represents the sinusoidal function mc005-1.jpg?
A.
mc005-2.jpg
C.
mc005-4.jpg
B.
mc005-3.jpg
D.
mc005-5.jpg
 

 6. 

Which function represents the graph shown, where x is in radians?
mc006-1.jpg
A.
mc006-2.jpg
C.
mc006-4.jpg
B.
mc006-3.jpg
D.
mc006-5.jpg
 

 7. 

Given the trigonometric function mc007-1.jpg, which is the x-coordinate at which the function is undefined?
A.
mc007-2.jpgp
C.
mc007-4.jpgp
B.
mc007-3.jpgp
D.
mc007-5.jpgp
 

 8. 

Given the trigonometric function mc008-1.jpg, find the value of the y-coordinate of the point with x-coordinate –1200°.
A.
mc008-2.jpg
C.
mc008-4.jpg
B.
mc008-3.jpg
D.
mc008-5.jpg
 

 9. 

What are the solutions for mc009-1.jpgmc009-2.jpg = 0 in the interval mc009-3.jpg?
A.
x = 90° and 270° mc009-4.jpg
C.
x = 60° and 240° and 45°
B.
mc009-5.jpg mc009-6.jpg mc009-7.jpg mc009-8.jpg
D.
x = 30° and 210° mc009-9.jpg
 

 10. 

Solve mc010-1.jpg to three decimal places on the interval mc010-2.jpg .
A.
x = 0.340, x = 5.943
C.
x = 1.911, x = 1.231
B.
x = 1.231, x = 5.052
D.
x = 1.911, x = 4.373
 

Short Answer
 

 1. 

Explain how you could graph the function sa001-1.jpg given a table of values containing ordered pairs for the function sa001-2.jpg.
 

 2. 

Sketch the graph of sa002-1.jpg for two cycles and state the domain, range, period, and equations of the asymptotes. x is measured in radians.
 

Problem
 

 1. 

The table shows the hours of daylight measured on the first day of each month, over a 1-year period in a northern Ontario city.
Month
Hours of Daylight (h:min)
1
8:25
2
9:55
3
11:35
4
13:30
5
15:48
6
16:15
7
15:25
8
14:26
9
12:35
10
10:39
11
9:01
12
8:00
a) Graph the table data.
b) Use the graph and the table to develop a sinusoidal model to represent the information.
c) Graph the model on the same set of axes as the data. Comment on the fit.
d) Use your model to estimate the number of hours of daylight, to the nearest tenth of an hour, on January 15, and verify the solution using the graph.
 

 2. 

The graph of pr002-1.jpg is transformed so that the amplitude becomes 2 and the x-intercepts coincide with the maximum values.
a) What is the equation of the transformed function?
b) What phase shift of the transformed function will produce a y-intercept of –1?
c) What is the equation of the function after the transformation in part b)?
d) Verify your solution to part c) by graphing.
 

 3. 

a) Describe the transformations that must be applied to the graph of pr003-1.jpg to obtain the graph of pr003-2.jpg. Be sure to list the transformations in the proper order.
b) State the domain and range of f(x) and g(x).
c) Modify the equation for g(x) to include a phase shift of 90° to the right. Name this equation h(x).
 



 
Check Your Work     Start Over