Name: 
 

Math 12 Pre-Calculus LG 9 Unit 3 Practice Test #1



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

The graph of mc001-1.jpg can be obtained by translating the graph of mc001-2.jpg
A.
mc001-3.jpg units to the right
C.
mc001-5.jpg units to the right
B.
mc001-4.jpg units to the right
D.
mc001-6.jpg units to the  right
 

 2. 

Which of the following is not an asymptote of the function mc002-1.jpg?
A.
x = mc002-2.jpgp
C.
x = mc002-4.jpgp
B.
x = mc002-3.jpgp
D.
mc002-5.jpg
 

 3. 

Which function has zeros only at mc003-1.jpg?
A.
y = tan(q mc003-2.jpgp)
C.
y = tan(q mc003-4.jpgp)
B.
mc003-3.jpg
D.
y = tan(q mc003-5.jpgp)
 
 
Use the following information to answer the questions.

The height, h, in metres, above the ground of a car as a Ferris wheel rotates can be modelled by the function nar001-1.jpg, where t is the time, in seconds.
 

 4. 

What is the radius of the Ferris wheel?
A.
9 m
C.
19 m
B.
18 m
D.
36 m
 

 5. 

How long does it take for the wheel to revolve once?
A.
mc005-1.jpg s
C.
160 s
B.
80 s
D.
mc005-2.jpg s
 

 6. 

What is the minimum height of a car?
A.
19 m
C.
160 m
B.
9 m
D.
80 m
 

 7. 

What is the maximum height of a car?
A.
19 m
C.
160 m
B.
80 m
D.
31 m
 

 8. 

mc008-1.jpgmc008-2.jpg radians is equal to how many degrees?
A.
240°
C.
420°
B.
150°
D.
330°
 

 9. 

If the angle q is 1600° in standard position, in which quadrant does it terminate?
A.
quadrant III
C.
quadrant II
B.
quadrant IV
D.
quadrant I
 

 10. 

The range (in radians) of the graph of mc010-1.jpg is
A.
mc010-2.jpg
C.
mc010-4.jpg
B.
mc010-3.jpg
D.
mc010-5.jpg
 

 11. 

What is the period of the sinusoidal function mc011-1.jpg?
A.
mc011-2.jpgp
C.
mc011-4.jpgp
B.
mc011-3.jpgp
D.
mc011-5.jpgp
 

 12. 

Given the trigonometric function mc012-1.jpg, which is the x-coordinate at which the function is undefined?
A.
mc012-2.jpgp
C.
mc012-4.jpgp
B.
mc012-3.jpgp
D.
mc012-5.jpgp
 

 13. 

Given the trigonometric function mc013-1.jpg, find the value of the y-coordinate of the point with x-coordinate –1200°.
A.
mc013-2.jpg
C.
mc013-4.jpg
B.
mc013-3.jpg
D.
mc013-5.jpg
 

 14. 

What are the solutions for mc014-1.jpgmc014-2.jpg = 0 in the interval mc014-3.jpg?
A.
x = 90° and 270° mc014-4.jpg
C.
x = 60° and 240° and 45°
B.
mc014-5.jpg mc014-6.jpg mc014-7.jpg mc014-8.jpg
D.
x = 30° and 210° mc014-9.jpg
 
 
Use the following information to answer the questions.

The height, h, in centimetres, of a piston moving up and down in an engine cylinder can be modelled by the function nar002-1.jpg, where t is the time, in seconds.
 

 15. 

What is the period?
A.
mc015-1.jpg s
C.
mc015-3.jpg s
B.
mc015-2.jpg s
D.
mc015-4.jpg s
 

Short Answer
 

 1. 

Explain how you could graph the function sa001-1.jpg given a table of values containing ordered pairs for the function sa001-2.jpg.
 

 2. 

Solve sa002-1.jpg on the interval sa002-2.jpg.
 

 3. 

The water level at an ocean inlet has a depth, d, in metres, that varies with the time, t, in hours after midnight, according to the equation sa003-1.jpg. What is the water depth at 2:30 a.m., to the nearest hundredth of a metre?
 

 4. 

Describe the transformations that, when applied to the graph of y = cos x, result in the graph of sa004-1.jpg.
 

 5. 

A pebble is embedded in the tread of a rotating bicycle wheel of diameter 60 cm. If the wheel rotates at 4 revolutions per second, determine a relationship between the height, h, in centimetres, of the pebble above the ground as a function of time, t, in seconds.
 

Problem
 

 1. 

The table shows the hours of daylight measured on the first day of each month, over a 1-year period in a northern Ontario city.
Month
Hours of Daylight (h:min)
1
8:25
2
9:55
3
11:35
4
13:30
5
15:48
6
16:15
7
15:25
8
14:26
9
12:35
10
10:39
11
9:01
12
8:00
a) Graph the table data.
b) Use the graph and the table to develop a sinusoidal model to represent the information.
c) Graph the model on the same set of axes as the data. Comment on the fit.
d) Use your model to estimate the number of hours of daylight, to the nearest tenth of an hour, on January 15, and verify the solution using the graph.
 

 2. 

The table shows the fraction of the Moon that can be seen at midnight from Simone’s town. Day 1 represents January 1.
Day
1
2
3
4
5
6
10
14
19
21
Fraction Visible
0.25
0.17
0.12
0.06
0.02
0.00
0.10
0.56
0.98
1.00

Day
24
30
35
41
45
51
56
60
65
66
Fraction Visible
0.78
0.33
0.02
0.15
0.65
1.00
0.78
0.30
0.01
0.00
a) What is the period of the sine function that could be used to model the data?
b) What is the amplitude of the function?
c) What is the phase shift of the function?
d) What is the vertical shift?
e) Use your answers to parts a) to d) to write an equation for the function.
f) Use your function to determine the fraction of the moon visible to Simone on day
i) 100
ii) 150
iii) 200
 

 3. 

George sells new cars at a local dealership. The table shows the number of cars sold by George each month for a year. Note that month 1 corresponds to January.
Month
Number of New Cars Sold
1
5
2
 
3
20
4
30
5
37
6
39
7
36
8
30
9
19
10
10
11
4
12
2

a) Use the table to determine a function that can be used to model the information.
b) Over what domain and range is this model valid?
c) The value for the second month is missing. Use your model to determine how many cars George sold in that month.
d) Do you expect the data to continue to be sinusoidal? Explain.
 

 4. 

The flapping of a bird’s wing can be modelled by the function pr004-1.jpg, where y represents the distance the tip of the wing travels, in centimetres, and t represents the time, in seconds.
a) Determine the period of the motion of the wing.
b) Determine the amplitude, the minimum value, and the maximum value.
c) What are the first times after t = 0 that the tip of the wing reaches the minimum and maximum values?
d) Determine the position of the wing tip at
i) pr004-2.jpg s
ii) pr004-3.jpg s
iii) pr004-4.jpg s
 

 5. 

A sinusoidal function has an amplitude of 2, a period of 180°, and a maximum at (0, 4).
a) Represent this function with an equation using a sine function.
b) Represent this function with an equation using a cosine function.
c) Explain how these two functions are related.
 



 
Check Your Work     Start Over