	LG 10-11 Ver A
Name:	Student #:
Date:	T.A. #:
Mathematics 12 Pre-Calculus LEARNING GUIDE 10/11 TEST – TRIG IDENTITIES	
	/25
When using a calculator, you should provide a decimal a two decimal places (unless otherwise indicated). Su in the final step of the solution.	
1. Determine the non-permissible values of the following	ng expression in radians: (2 marks)
$\frac{\tan x}{\sin x}$	
2. Write the expression sin 32° cos 21° – cos 32° sin 2	1° as a single trig function. (1 mark)

- 3. Given the identity $\frac{\sin x}{1 \cos x} = \frac{1 + \cos x}{\sin x}$:
 - a) verify the identity for the particular case when $x = \frac{\pi}{3}$. (1 mark)
 - b) prove the identity algebraically. (2 marks)

4. Write the expression $\cos^2 \frac{\pi}{3} - \sin^2 \frac{\pi}{3}$ in terms of a single trig function. (1 mark)

5. Prove the following identities. (2 marks each)

a)
$$\sin^2 x \cot^2 x = 1 - \sin^2 x$$

b) $\csc x(1+\sin x) = 1+\csc x$

$$c) \frac{1-\cos 2x}{1+\cos 2x} = \tan^2 x$$

d)
$$\frac{\sin \theta}{1 + \sin \theta} - \frac{\sin \theta}{1 - \sin \theta} = -2\tan^2 \theta$$

6. Prove the following identity. (2 marks)

$$\frac{\cos^2 x - \sin^2 x}{\sin x + \cos x} = \cos x - \sin x$$

7. Solve the following equation. $0 \le x < 2\pi$ (2 marks)

$$\sin 2x - \cos x = 0$$

8. Solve the following equation. Give the general solution expressed in radians. (3 marks)

$$3\cos x + 2 = 5\sec x$$

9. Solve the following equation. Give the general solution expressed in degrees. (3 marks)

$$\cos 2x + 1 = \cos x$$