/25

Date:	T.A. #:
	12 Pre-Calculus '11 TEST – TRIG IDENTITIES

When using a calculator, you should provide a decimal answer that is correct **to at least two decimal places** (unless otherwise indicated). Such rounding should occur **only** in the final step of the solution.

1. Determine the non-permissible values of the following expression in radians: (2 marks)

$$\frac{\sec x}{\sin x}$$

2. Write the expression $\sin 32^{\circ} \cos 21^{\circ} + \cos 32^{\circ} \sin 21^{\circ}$ as a single trig function. (1 mark)

- 3. Given the identity $\frac{\cos x}{1-\sin x} = \frac{1+\sin x}{\cos x}$
 - a) verify the identity for the particular case when $x = \frac{\pi}{3}$. (1 mark)
 - b) prove the identity algebraically. (2 marks)

4. Write the expression $2\sin^2 x - 1$ in terms of a single trig function. (1 mark)

- 5. Prove the following identities. (2 marks each)
- a) $\sec x \cot x \sin^2 x = \sin x$

b) $\csc x(1+\sin x) = 1+\csc x$

c)
$$\frac{1+\cos 2x}{\sin 2x} = \cot x$$

d)
$$\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{1}{\sin x \cos x}$$

6. Prove the following identity. (2 marks)

$$\frac{\cos^2 x - \cos x - 2}{4\cos x - 8} = \frac{\cos x + 1}{4}$$

7. Solve the following equation. $0 \le x < 2\pi$ (2 marks)

$$\sin x + 1 = 2 \csc x$$

8. Solve the following equation. Give the general solution expressed in radians. (3 marks)

$$tan^2x + \sqrt{3}\tan x = 0$$

9. Solve the following equation. Give the general solution expressed in degrees. (3 marks)

$$\cos 2x - 2 = 3\sin x$$