Name:	Student #:
Date:	T.A. #:

Mathematics 12 Pre-Calculus LEARNING GUIDE 7 TEST – ANGLES AND TRIG EQUATIONS /27

*Full marks will NOT be given for the final answer only.

When using a calculator, you should provide a decimal answer that is correct **to at least two decimal places** (unless otherwise indicated). Such rounding should occur **only** in the final step of the solution.

1. Draw the angle $\frac{5\pi}{3}$ radians in standard position. After you have drawn the angle, convert the angle to degrees. (2 marks)

2. Draw the angle 170° in standard position. After you have drawn the angle, convert the angle to radians. Express your answer as an exact value in terms of π . (2 marks)

3. Given the angle -52° , determine all of the coterminal angles on the domain $-720^{\circ} \le \theta \le 180^{\circ}.$ (1 mark)

4. The pendulum of a grandfather clock has a length of 115cm. If it swings through an angle of 43° , what is the arc length of the pendulum? (2 marks)

- 5. The point $A\left(\frac{-4}{5}, \frac{3}{5}\right)$ lies at the intersection of the unit circle and the terminal arm of an angle θ in standard position.
 - a) Draw a diagram to show θ in standard position and the point A on it's terminal arm. (1mark)
 - b) Determine the values of the six trig ratios for θ . Answers should be in lowest terms. (3 marks)

6. Determine the exact value for: (1 mark each)

a)
$$\sin \frac{7\pi}{6}$$

b)
$$\tan \frac{2\pi}{3}$$

c)
$$\sec \frac{7\pi}{4}$$

d)
$$\sin 210^{\circ}$$

- 7. The angle θ is in the 3rd quadrant, and $\cos \theta = \frac{-2}{\sqrt{7}}$.
 - a) Draw a diagram to show θ in standard position and a point P on its terminal arm. (1mark)
 - b) Determine possible coordinates for P. (1 mark)

8. Solve the equation $\sin\theta=\frac{1}{2},\ 0^{\circ}\leq\theta<360^{\circ}.$ (2 marks)

9. Solve each equation for θ algebraically, giving your answers as exact values where possible.

(2 marks each).

a)
$$3\cos\theta+\sqrt{3}=\cos\theta$$
 , $0\leq\theta<2\pi$

b)
$$2tan^2\theta + \tan\theta - 1 = 0, -\pi \le \theta \le \pi$$

10. Solve algebraically for θ in radians. Write your general solution as exact values. (3 marks)

$$\csc\theta + \sqrt{2} = 0$$