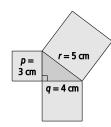
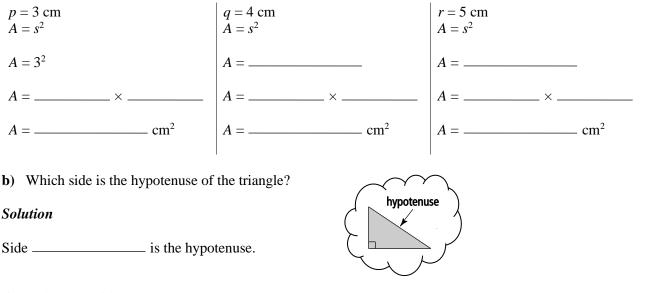

Learning Guide 4: Exploring the Pythagorean Relationship

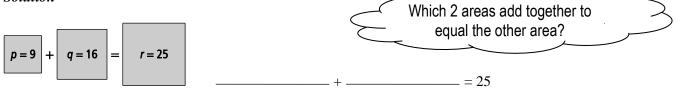
Watch the following instructional video. In your handout: i) Copy down the given notes and examples ii) Complete the assigned questions https://youtu.be/igA3LOWWRCs


Example 1: Describe Relationships in Right Triangles

Right triangle


- a triangle with a right angle (90°)
- the right angle is marked with a small square
- the 2 shorter sides are called the legs
- the longest side is called the hypotenuse

a) What is the area of each square?



Solution

c) Write an addition statement to show how the areas are related.

Solution

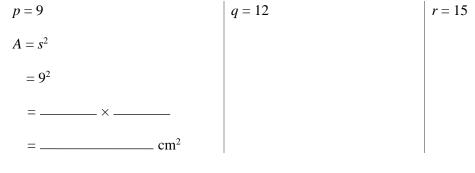
d) Describe the relationship between the side lengths of the triangle. Use words and symbols.

Solution

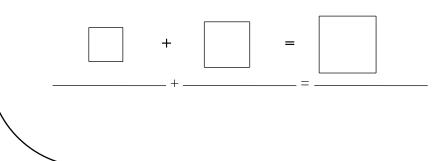
Words: The sum of the areas of the squares attached to legs p

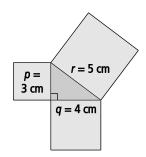
and ______ equals the area of the square attached to hypotenuse *r*.

Symbols: $p^2 + __2 = r^2$


Pythagorean relationship

• the relationship between the lengths of the sides of a right triangle • $a^2 + b^2 = c^2$, where *c* is the hypotenuse


The sides of a right triangle are 9 cm, 12 cm, and 15 cm.


a) Sketch the triangle.Draw a square on each side of the triangle.

b) What is the area of each square?

c) Write an addition statement using the areas of the 3 squares.

a²

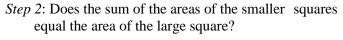
c²

b²

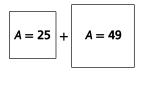
Example 2: Identify a Right Triangle

A triangle has side lengths of 5 cm, 7 cm, and 9 cm.

a) What are the areas of the 3 squares that can be drawn on the sides of the triangle?

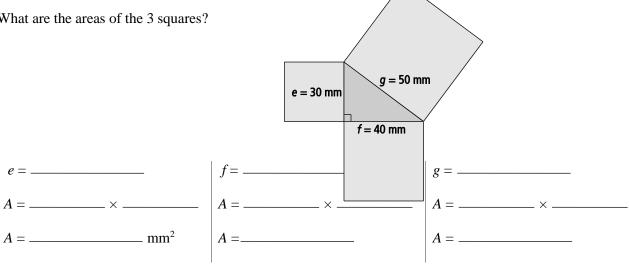

Solution

b) Is the triangle a right triangle? Explain.


Solution

Step 1: Add the areas of the 2 smaller squares.

 $74 \text{ cm}^2 \neq 81 \text{ cm}^2$

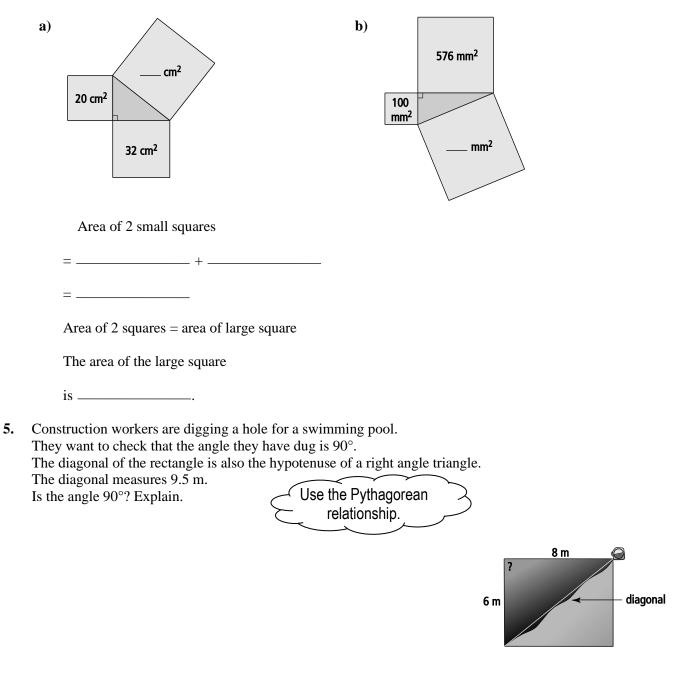

The triangle ____ _____a right triangle. (is or is not)

25 + 49 = _____

Practise

What are the areas of the 3 squares? 1.

- **2.** A right triangle has side lengths of 9 mm, 12 mm, and 15 mm.
 - **a**) Draw a square on each side of the triangle.



b) What is the area of each square?

3.

	Square 1	Square 2	Square 3
c)	Is this a right triangle? Show your	work.	
	Area of 2 small squares = area of la	arge square	
	+	=	
	The triangle a (is or is not)	right triangle.	
a)	Write an addition statement using t	he areas of the 3 squares.	25 cm ²
	Area of 2 small squares = area of la	arge square	169 cm ²
b)	What is the side length of each squ		
	Square 1	Square 2	Square 3
	$A = 25 \text{ cm}^2$	<i>A</i> =	A =
	Side length = cm	Side length = cm	Side length = cm

4. Use the Pythagorean relationship to find the unknown area of each square.

Sentence: _____

Watch the following instructional video. In your handout: i) Copy down the given notes and examples ii) Complete the assigned questions https://youtu.be/D47QpJ8TnLI Warm Up 1. a) List the areas of the 3 squares, from smallest to largest. 100 cm² _____, _____, _____ 64 cm² **b**) Write an addition statement with the areas of the 3 squares. 36 cm² c) Calculate the side length of each of the squares. Find the square root of each area. The side lengths of the squares are _____, ____, and _____, 2. Is the triangle a right triangle? Show your work. 56.25 cm² 20.25 30.25 cm² cm² _____a right triangle. This triangle ____ (is or is not) Round to the nearest tenth (one decimal place). 3. **b**) 10.56 ≈ _____ **a)** $2.34 \approx$ _____ **d**) 30.01 ≈ _____ c) $5.98 \approx$ _____ Label 1.3, 2.5, and 3.8 on the number line. 4. 2 3 1 0

Example: Estimate the Square Root of a Number

Felicity wants to know if a wading pool will fit in her yard. She estimates the length of the sides to see if it will fit. The pool is square and has an area of 7 m^2 .

a) What is a reasonable estimate for the side length of the pool? Use perfect squares to estimate. Round your answer to 1 decimal place.

Solution

The side length of the pool is $\sqrt{7}$ (the symbol $\sqrt{7}$ means square root. $\sqrt{7}$ will give you the side length of a square that has an area of 7...the number that you square to get 7).

What number do you square to get 7?

 $2^2 = 4$, $3^2 =$ ______ The perfect squares closest to 7 are 4 and 9:

The square root of 7 is closer to the square root of 9.

 $\sqrt{9}$ = _____, so $\sqrt{7}$ will be a little less than 3. A reasonable estimate for $\sqrt{7}$ is 2.7 m.

b) Use a calculator to find the side length of the pool. Round your answer to 1 decimal place.

Solution

C 7 √ =

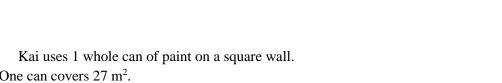
Round your answer to 1 decimal place. $2.645751311 \text{ m} \approx _____ \text{m}$ Is this answer close to the estimate? Circle YES or NO.

Use perfect squares to estimate the square root. Round your answer to 1 decimal place.		
Check your answer with a calculator.		
a) $\sqrt{18}$	b) $\sqrt{35}$	
Perfect squares on either side of 18:		
and		
←───	◄	
The closer square root is		
A reasonable estimate is		
Check with a calculator:		

Watch the following instructional video. In your handout: i) Copy down the given notes and examples ii) Complete the assigned questions https://youtu.be/YMD-rP25etA

Example 2: Identify a Number With a Square Root Between 2 Numbers

a) Name a whole number that has a square root be	etween 6 and 7	7.	
Solution			
Step 1: Find the square of 6: $6^2 =$	Find the s	quare of 7: $7^2 = -$	
Step 2: Plot these numbers on a number line:	√36	√?	√49
Step 3: Estimate a number between $\sqrt{36}$ and $\sqrt{49}$ $\sqrt{40}$ is between $\sqrt{36}$ and $\sqrt{49}$. The val		6 and 7.	1
<i>Step 4</i> : Check: C 40 √ =			
6.32455532 is between 6 and 7, so it is a p	ossible answe	r.	
b) How many whole numbers have a square root b	between 6 and	7?	
Solution		Ę	$6^2 = 36$ $7^2 = 49$
List the whole numbers larger than 36 and smaller t	than 49: 37, _	,	,
,,,,,	, -	,	,, 48
There are whole numbers that I	have square ro	oots between 6 and	17.
a) Find a whole number with a square root betwee	en 8 and 9.		
<i>Step 1</i> : 8 ² =	9 ² =		
Step 2: Plot these numbers on a number line.			
Step 3: Estimate a number between the 2 square	e roots:		
Step 4: Check:			


b) How many whole numbers have a square root between 8 and 9?

Practise

Juan is explaining how to estimate $\sqrt{28}$ to 1 decimal place without using a calculator. Finish Juan's explanation.
Step 1: Find the perfect squares on either side of 28. They are 25 and
Step 2: The perfect square that is closer to 28 is
Step 3:
Explain how to find a whole number that has a square root between 3 and 4.
<i>Step 1</i> : Find the squares of 3 and 4. $3^2 = $, $4^2 = $
Step 2: Draw a number line.

- Step 3: _____
- **3.** Estimate the square root of each number. Round your answer to 1 decimal place. Check your answer with a calculator.
 - a) 32
Perfect squares on either side of 32:b) 55
Perfect $5^2 = _$ $6^2 = _$ $\sqrt{32}$ is between $_$ and $_$ $\sqrt{55}$ i \checkmark \checkmark The closer square root is $_$ The clo
An estimate is $_$ An estimate is $_$ An estimate is $_$ Check with a calculator: $_$ Check

- 4. Estimate each value. Round your answer to 1 decimal place. Check your answer with a calculator.
 - **b**) $\sqrt{86}$ a) $\sqrt{14}$ Perfect squares on either side of 14: ____**>** The closer square root is _____. An estimate is _____. Check with a calculator:
- 5. What are all the whole numbers with a square root between 2 and 3?

One can covers 27 m². Estimate the side length of the wall. Round your answer to 1 decimal place.

6.

PAINT	
^{covers} 27 m ² of wall surface	
a wall sullar	

2² = 3² =

Sentence: _____

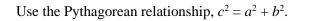
- 7. The square has an area of 20 cm^2 .
 - a) Estimate the side length to 1 decimal place.Perfect squares on either side of 20:

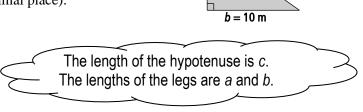
4 ² =	² =
$\sqrt{20}$ is between	and
4	
The closer square root is	

An estimate is _____.

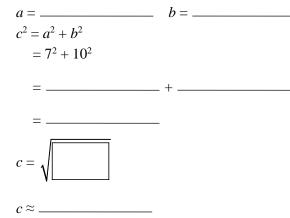
Check with a calculator: _____

20 cm ²	

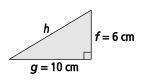

Watch the following instructional video. In your handout: i) Copy down the given notes and examples ii) Complete the assigned questions https://youtu.be/7QzvW9aJuWc 3.4 Warm Up Estimate $\sqrt{28}$ to 1 decimal place. 1. Perfect squares on either side of 28: =____ $5^2 =$ $\sqrt{28}$ is between _____ and _____. _____ The closer square root is _____. An estimate is _____. 2. Use a calculator to check your answer to #1. 3. List the numbers with a square root between 10 and 11. $10^2 =$ $11^2 =$ _____ The numbers are 101, ______, 120. Find the square root. 4. a) $\sqrt{36} =$ _____ b) $\sqrt{16} =$ _____ c) $\sqrt{100} =$ _____ d) $\sqrt{64} =$ _____ e) $\sqrt{49} =$ _____ f) $\sqrt{81} =$ _____

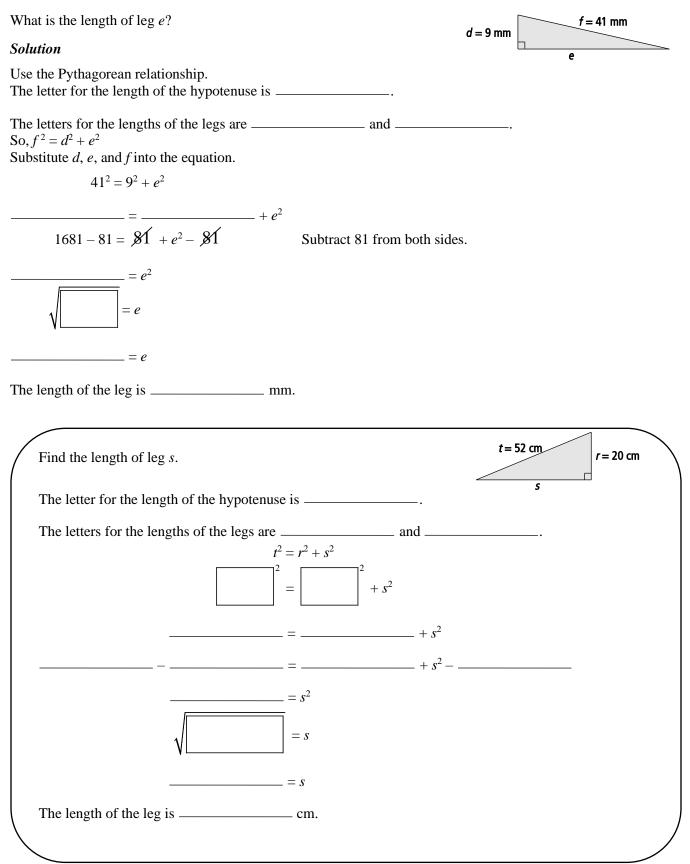

Using the Pythagorean Relationship

Example: Determine the Length of the Hypotenuse of a Right Triangle

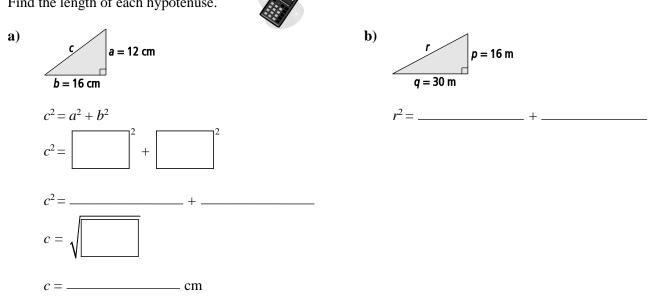

Find the length of hypotenuse c. Round your answer to the nearest tenth of a metre (1 decimal place).

Solution

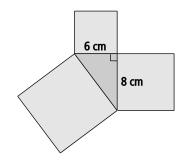



a = 7 m

The length of the hypotenuse is about _____ m.

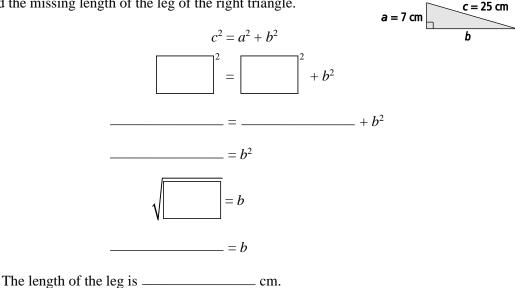


Example : Determine the Length of a Leg of a Right Triangle

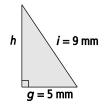


Practise

1. Find the length of each hypotenuse.



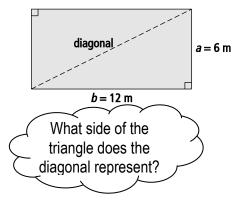
2. a) What is the area of each square attached to the legs of the right triangle?



- **b**) What is the area of the square attached to the hypotenuse?
- c) What is the length of the hypotenuse?

3. Find the missing length of the leg of the right triangle.

4. Find the missing length of the leg for the triangle. Round your answer to the nearest tenth of a millimetre (1 decimal place).

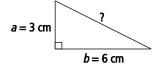


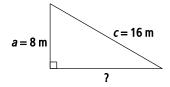
5. Tina wants to build a path across the diagonal of her yard. How long will the path be? Round your answer to the nearest tenth of a metre (1 decimal place).

Formula \rightarrow

Substitute \rightarrow

Solve \rightarrow

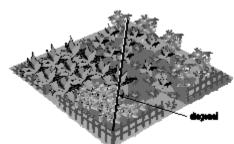

Watch the following instructional video. In your handout: i) Copy down the given notes and examples ii) Complete the assigned questions


https://youtu.be/B5jy2Edx0dl

Warm Up

1. What is the length of the hypotenuse in the triangle? Round your answer to the nearest tenth of a centimetre (1 decimal place).

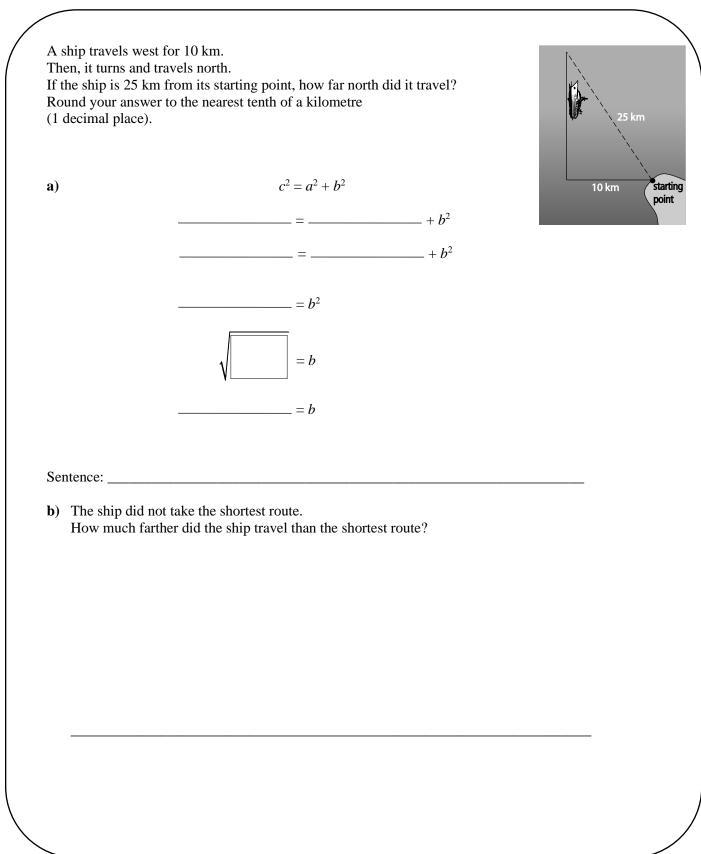
Formula \rightarrow Substitute \rightarrow Solve \rightarrow



2. What is the length of the leg in the triangle? Round your answer to the nearest tenth of a metre (1 decimal place).

Formula \rightarrow Substitute \rightarrow

Solve \rightarrow


- **3.** A square garden has an area of 36 m^2 .
 - **a**) What is the length of each side?

b) How long is a path running diagonally across the garden? Round your answer to the nearest hundredth of a metre (2 decimal places).

Applying the Pythagorean Relationship

Example: Determining Distances With Right Triangles

Example: Verify a Right Angle Triangle

A construction company is digging a rectangular hole with a width of 17 m and a length of 20 m. A worker measures the diagonal length to be 26.25 m.

(is or is not)

- **a**) Label the rectangle with the dimensions.
- **b**) Is the corner a right angle? Explain your answer.

$$a^{2} + b^{2} = c^{2}$$

$$b = ___$$

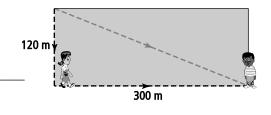
$$b = ___$$

$$c^{2} + b^{2}$$

$$= ____^{2} + ___^{2}$$

$$= ____+ ___$$

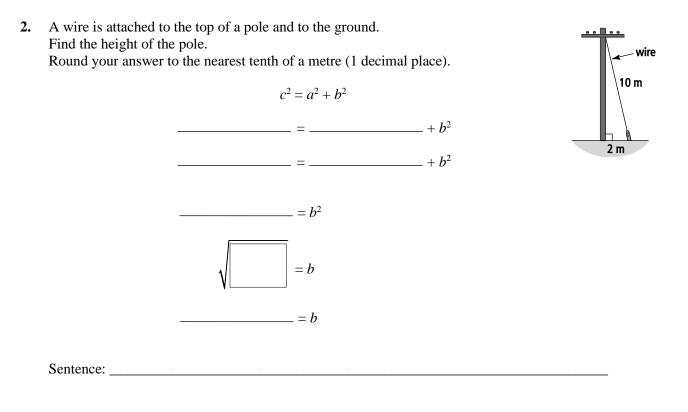
$$c = ____$$
The left side is $___$ to the right side.
$$(equal \text{ or not equal})$$
The corner $___$ a right angle.


Practise

- 1. Walter and Maria live beside a rectangular field.
 - a) Maria walked around 2 sides of the field. How far did Maria walk?

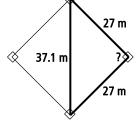
Sentence: _____

b) Walter walked across the field in a diagonal line. How far did Walter walk? Round your answer to the nearest metre.


_____+ _____ = _

c) Who walked farther? By how much?

c = _____


a = _

3. You are checking the design plans for a baseball diamond. Is the triangle a right triangle? Explain.

- 4. The size of a computer monitor is based on the length of the diagonal of the screen.
 - a) How long does the ad say the diagonal is?
 - **b**) Shahriar thinks that the diagonal is not as large as the ad says. Is he correct? Calculate the length of the diagonal to find out.

