2.4 Determining Square Roots of Rational Numbers

MathLinks 9, pages 72-81

Key Ideas Review

Select words from column B to complete the statements in column A.

A	В
1. The side of a square is equal to	a) the product of two equal rational factors
2. The area of a square is equal to	b) an exact answerc) an approximation
3. The square root of a perfect square is	d) the square root of the area
4. The square root of a non-perfect square determined with a	e) the square of the side
calculator is	
5. A perfect square can be expressed as	

Check Your Understanding

6. a) Use the diagram to identify a rational number with a square root between 5 and 6.

b) Using the same thinking, what rational number has a square root between 3 and 4?

- **7.** Estimate and calculate the number that has the given square root.
 - **a**) 2.2
- **b**) 8.7
- c) 11.3
- **d)** 0.92
- **8.** Estimate and calculate the area of each square, given its side length.
 - a) 14.7 cm
- **b)** 2.3 km

- **9.** Is each of the following rational numbers a perfect square? Explain.
 - a) $\frac{4}{9}$

- **b**) 0.4
- **c)** 0.81
- d) $\frac{1}{2}$
- 10. Determine whether each rational number is a perfect square. Show your thinking.
 - a) 0.16
- **b**) $\frac{90}{49}$
- **c)** 0.001
- **d**) $\frac{8}{18}$
- 11. Evaluate.
 - a) $\sqrt{289}$
- **b**) $\sqrt{0.0361}$
- c) $\sqrt{1225}$
- **d**) $\sqrt{5.29}$
- 12. Calculate the side length of each square from its area.
 - a) 2.25 cm²
- **b**) 361 m²
- **13.** Calculate each square root.
 - a) $\sqrt{25}$, $\sqrt{36}$
- **b)** $\sqrt{49}$, $\sqrt{64}$
- c) $\sqrt{0.16}$, $\sqrt{0.25}$ d) $\sqrt{0.64}$, $\sqrt{0.81}$

- 14. Use your answers to #13 to help estimate each square root to the specified number of decimal places.
 - a) $\sqrt{30}$, to the nearest tenth
 - **b)** $\sqrt{52}$, to the nearest tenth
 - c) $\sqrt{0.18}$, to the nearest hundredth
 - d) $\sqrt{0.78}$, to the nearest hundredth
- 15. A water fountain has a square pool with a surface area of 5.29 m². What is the length of the side of the pool?
- **16.** A square has an area of 225 cm². What is the radius of the largest circle that can fit inside the square? Show your thinking.

17. Chu needs carpet for a square room with an area of 15 m2. The store sells carpet from rolls 3.8 m wide. Will the store be able to install the carpet without a seam? Justify your answer.