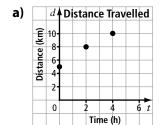
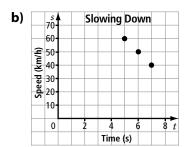


Creating a Table of Values

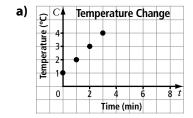

You can use the coordinate pairs on the graph to make a **table of values**. Arrange the table of values horizontally or vertically. The first row or column in a table of values has the same title as the horizontal axis on the graph. The second row or column has the same title as the vertical axis.

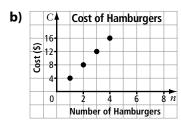

	C/ 80-	_	Co	st	of	Shi	rts	
€	60- 40-					-	5, 7	75)
S	40-			_	(3,	45)		Н
	20-	•	(1	, 15)			
	0			2	-	1	_ (n
			Nur	nbe	r o	f Sh	irts	

Number of Shirts, n	1	3	5
Cost, C	15	45	75

Number of Shirts, n	Cost, C
1	15
3	45
5	75

1. Create a table of values from each graph.





Analysing Graphs of Linear Relations

A **linear relation** is a pattern made by a set of points that lie in a straight line. Sometimes it is possible to have points between the ones shown on a graph. Ask, "Does it make sense to have values between those on the graph?"

2. Does it make sense to have points between the ones on each graph? Explain.

Patterns in a Table of Values

Linear relations can be represented using a table of values. You can sometimes tell that a relationship in a table is linear if both of the following statements are true.

- Consecutive values in one column change by the same amount.
- Consecutive values in the other column change by the same amount.

S	t
2	6
4	12
6	18
8	24

The difference between consecutive values for *s* is 2. The difference between consecutive values for t is 6. You can use this information to predict the next values in the table.

For *s*, the next value could be 10.

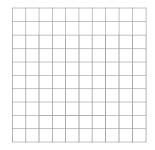
For *t*, the next value could be 30.

3. Determine if each table of values represents a linear relation. Explain how you arrived at your answer.

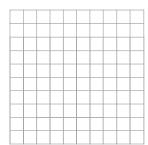
b)

_					
a)	Distance, d (m)	Speed, s (m/s)			
	0	2.1			
	15	4.2			
	30	6.3			
	45	8.4			

Time, <i>t</i> (s)	Height, h (m)
5	10
10	20
15	40
20	80


4. For each table of values in #3 that represents a linear relation, predict the next ordered pair.

Linear Relationships


Linear relationships represented by formulas or equations can be graphed by

- making a table of values, and
- graphing the ordered pairs from the table of values.
- **5.** For each equation, create a table of values and graph the linear relation.

a)
$$y = 3x + 2$$

b)
$$t = -4n + 3$$

