7.1 Multiplying and Dividing Monomials

MathLinks 9, pages 254-263

Key Ideas Review

Use the following terms to complete #1 and 2.

dividend division product *x*-tiles

exponent rules -x-tiles

numerical coefficients

1. a) This is a model of multiplication.

The x^2 -tiles represent the ____

The factors are represented by ______.

b) This is a model of _____

The six $-x^2$ -tiles represent the _____

The divisor is represented by three ___

_____ and then use the

to multiply the variables.

2. Rewrite the sentence in #1c) to reflect a similar strategy for dividing monomials.

Check Your Understanding

- 3. Sketch a model of each multiplication statement. What is the product?
 - a) (4x)(-2x)

b) (-4x)(-3x)

4. Write a division statement for each model and solve. The grey tiles in b) are xy-tiles.

5. Use models to solve the following.

a)
$$10xy \div 5y$$

b)
$$15x^2 \div 5x$$

6. Solve.

a)
$$(-6a)(-4a)$$
 b) $(24x) \frac{x}{2}$

b)
$$(24x) \frac{x}{2}$$

c)
$$\frac{20x^2}{-x}$$

7. Write an expression for the area of each shape. What is the simplified expression for the area of each shape?

a)

b)

- 8. A rectangular field is 7 m long and has an area of 84 m². Write an equation you can use to determine the field's width. What is the field's width?
- 9. Determine the missing dimension in each figure. Show your work.

a)

b)

