Math 9 Adapted LG 2 – Expectation 1 Exponents

Understanding Exponents:

We use exponents as a quick way to show **repeated multiplication**.

For instance, if I multiplied 2 three times,

instead of writing it as repeated multiplication: $2 \times 2 \times 2$ \longrightarrow I could write it like this: 2^3

The number being multiplied is the BASE.-

How many times it is multiplied is shown with the **EXPONENT**.

Evaluate means "what does it actually equal?" $2^3 = 2 \times 2 \times 2 = 8$

Repeated multiplication	Base	Exponent	Exponential Form	Evaluate
2 x 2 x 2	2	3	2 ³	8
2 x 2 x 2 x 2 x 2 x 2				
3 x 3				
	5	3		
			10 ⁴	

Ask a teacher to show you the exponent button on your calculator to evaluate these:

 $2^{10} = 3^9 = 1.3^7 = 1^{999} =$

Exponential Form	Base	Exponent	Repeated multiplication	Evaluate
23	2		2 x 2 x 2	8
32		2		9
54			5 x 5 x 5 x 5	
	6	2		
	8		8 x 8 x 8	
			9x9x9x9x9x9	
103				
	7			49
	2			16
		3		27

23	2	3	2 x 2 x 2	8
3 ²	3	2	3 x 3	9
54	5	4	5 x 5 x 5 x 5	625
6 ²	6	2	6 x 6	36
8 ³	8	3	8 x 8 x 8	512
9 6	9	6	9x9x9x9x9x9x9	531,441
10 ³	10	3	10 x 10 x 10	1,000
7 ²	7	2	7 x 7	49
24	2	4	2 x 2 x 2 x 2	16
3 ³	3	3	3 x 3 x 3	27

Be sure to always check your work!

RULE: If the exponent is 1, the answer is the base.

2 ¹	=	2		345 ¹ =		45.29) ¹ =	12345	5 ¹ =	
Ev	alu	ate WI	IHOUT U	SING A	CALCULATOR ()	/ou ¹ a.	2 ¹		1 b.	5 ²
		can	use a mi	utiplica	tion table):	2 a.	3 ³		2 b.	8 ²
						3 a.	0 ⁸²		3 b.	100 ¹
						4 a.	10 ⁷		4 b.	0 ²⁰
				Answer	Кеу	5 a.	8 ¹		5 b.	5 ¹
		1 a. 2 a. 3 a.	2 27 0	1 2 3	b. 25 b. 64 b. 100	6 a.	10 ⁴		6 b.	6 ²
		4 a. 5 a. 6 a.	10000000 8 10000	4 5 6	b. 0 b. 5 b. 36	7 a.	4 ²		7 b.	7 ²
		7 a. 8 a. 9 a. 10 a	16 100000000000 81 10000	7 8 9 1(b. 49 b. 1 b. 1	8 a.	100 ⁶		8 b.	1 ⁹
					-	9 a.	9 ²		9 b.	1 ⁹⁹
						10 a.	100 ²		10 b.	2 ³

RULE: If the exponent is 0, the answer is ALWAYS 1.

$2^{0} = 1$ $555^{0} = 7.23^{0} = 12345$	0 =
--	-----

We can write these rules using the letter *x* to represent *any* number. So.....

$$x^1 = x \qquad \qquad x^0 = 1$$

The Product Rule

Ways to show multiplication: $2 \times 2 \times 2$ can also be written like: $2 \cdot 2 \cdot 2$ or (2)(2)(2)

RULE: When **multiplying** like bases, keep the base and **add** the exponents to write as a single power (one base with one exponent).

Multiplying	Repeated multiplication	Single power
$2^2 \times 2^3$	2 x 2 x 2 x 2 x 2	2 ⁵
$13^{1} \times 13^{2}$		
9 ³ x 9 ⁴		
$2^7 \times 3^7$	The base is not the same!!	Can't write as a single power!

This only works if the BASE IS THE SAME! Write as a single power if it is possible:

1.	$2^1 \times 2^{10} =$	6. $1^1 \times 2^2 =$
2.	$3^{10} \times 2^{10} =$	7. $5^{10} \times 5^{10} =$
3.	(-23^3) x (-23^4) =	8. $7.3^3 \times 73^4 =$
4.	$1.3^4 \times 1.3^2 =$	9. $9^{41} \times 9^{22} =$
5.	$23^3 \times 23^4 =$	10. $123^4 \times 123^{10} =$

We can write this rule using the letter x and m and n to represent any different numbers.

$$x^m \cdot x^n = x^{m+n}$$

Simplify the	ese expressions:	^{1.} $6^7 \cdot 6^8$	^{2.} $3^1 \cdot 3^8$
		$^{3.}$ $8^9 \cdot 8^9$	$^{4.}$ 8 ⁵ · 8 ⁶
Check your wor	k:		
^{1.} 6 ⁷ · 6 ⁸	^{2.} 3 ¹ · 3 ⁸		
$= 6^{15}$	$= 3^{9}$		
^{3.} 8 ⁹ · 8 ⁹	4. 8 ⁵ · 8 ⁶	5. 9 7 9 2	6. 53 56
$= 8^{18}$	$= 8^{11}$	3.3	0.0
^{5.} $3^7 \cdot 3^2$	^{6.} $5^3 \cdot 5^6$		
$= 3^9$	$= 5^{9}$		
$^{7.}$ 3 $^{9} \cdot 3^{7}$	^{8.} 5 ⁰ · 5 ⁰		
$= 3^{16}$	$=5^{0}=1$	7. 39.37	$^{8.}$ 5 0 5 0
^{9.} 3 ⁵ · 3 ⁸	^{10.} 3 ¹ · 3 ⁸	0 0	0 0
$= 3^{13}$	$= 3^9$		

^{9.} $3^5 \cdot 3^8$ ^{10.} $3^1 \cdot 3^8$

Try these toughies...remember your rules when adding negative and positive numbers:

1)
$$(-5)^{-10} \cdot (-5)^{15}$$
 2) $\left(\frac{4}{5}\right)^{-6} \cdot \left(\frac{4}{5}\right)^{-9}$ 3) $(1.4)^{-12} \cdot (1.4)^{5}$

4)
$$\left(-\frac{7}{6}\right)^9 \cdot \left(-\frac{7}{6}\right)^3$$
 5) $(-13)^0 \cdot (-13)^{-19}$ 6) $8^{-14} \cdot 8^{-4}$

The Quotient Rule

Maria ta alegia di visiana 10 - 0		10/0		12
ways to show division: $12 \div 2$	can also be written like:	12/2	or	2

RULE: When **dividing** like bases, keep the base and **subtract** the exponents to write as a single power (one base with one exponent).

Dividing	Exponent Work	Single power
$2^5 \div 2^2$	Subtract the exponents $5 - 2 = 3$	2 ³
8 ¹⁰ / 8 ⁵		
$\frac{4^9}{4^7}$		
$5^7 \div 3^7$	The base is not the same!!	Can't write as a single power!
99 ²⁰ 99 ⁷		
$\frac{7^{6}}{7^{4}}$		
10 ¹⁰ / 8 ⁵		
$(-5)^5 \div (-5)^2$		
4 ¹² / 4 ¹¹		
$3^{22} \div 3^2$		

We can write this rule Simplify these expressions: using the letter x and m and *n* to represent any $^{1.}$ 4^{6} 2. 4^{8} different numbers. $\overline{4^2}$ $\overline{4^2}$ x^m x^{m-n} = x^n ^{3.} 9⁷ 4. 8^6 96 $\overline{8^{1}}$ Check your work! ↓ $^{5.}$ 3^4 6. 7^{6} ^{1.} 4⁶ ^{2.} 4⁸ $\overline{4^2}$ $\overline{4^2}$ $\overline{7^1}$ $\overline{3^4}$ $= 4^4$ $= 4^{6}$ ^{3.} 9⁷ $\frac{8^6}{8^1}$ $\overline{9^6}$ = 9 $= 8^{5}$ $^{7.}$ 7^{2} ^{8.} 9⁸ ^{5.} 3⁴ $\frac{6}{7^{1}}$ $\overline{3^4}$ $\overline{7^1}$ $\overline{9^{4}}$ $= 3^0 = 1$ $= 7^{5}$ $\frac{7}{7}$ $\frac{7^2}{7^1}$ ^{8.} 9⁸ $\frac{1}{9^4}$ = 7 $=9^4$ $^{9.}$ 4^5 10. 8^3 $^{9.}$ $\frac{4^5}{4^4}$ $\frac{10.}{8^3}$

Sometimes we use a variable (letter) to represent an unknow number.

$\frac{x^7}{x^3} = x^4$ or $(q^7)(d)$	$(2^{2}) = q^{5}$ or	y ⁰ = 1 c	or $m^1 = m$
---------------------------------------	----------------------	----------------------	--------------

 $\overline{8^3}$

= 4

 $= 8^0 = 1$

Try these:

 $\overline{4^4}$

$\frac{r^{10}}{r^3} =$	k ⁰ =	$(j^{25})(j^{20}) =$	h^1 =
$(s^9)(s^6) =$	<i>p</i> ¹ =	<i>g</i> ⁰ =	$\frac{s^{60}}{s^{35}} =$

Ask your teacher for mini quiz 1

Raising a Power to a Power Rule

Power to power	Expanded form	Single power
$(5^2)^3$	$(5^2)(5^2)(5^2)$	5 ⁶
(10 ⁹) ⁴		
$(-3.5^4)^3$		

Write as a single power:		Rule: when raising a power	
^{1.} $(9^4)^2$	^{2.} $(3^9)^9$	and multiply the exponents.	
		$(\mathbf{x}^{\mathbf{m}})^{\mathbf{n}} = \mathbf{x}^{\mathbf{m}\mathbf{n}}$	
^{3.} $(4^4)^3$	$^{4.}$ $(8^2)^6$		

5(01)7	6 (46)8	^{1.} $(9^4)^2$	^{2.} (3 ⁹) ⁹
. (31)	$(4^{\circ})^{\circ}$	$=9^{8}$	$= 3^{81}$
		^{3.} $(4^4)^3$	^{4.} $(8^2)^6$
		$= 4^{12}$	$= 8^{12}$
7 (-1) 9	8 (-0) 2	^{5.} $(3^1)^7$	$^{6.}$ $(4^6)^8$
$(8^{1})^{2}$	o. (7 ⁰) ³	$= 3^7$	$=4^{48}$
		^{7.} $(8^1)^2$	^{8.} $(7^0)^3$
		$= 8^2$	$=7^{0}=1$
9 (01)0	10 (26)7	^{9.} $(6^1)^0$	$^{10.}$ $(2^6)^7$
$(6^{1})^{0}$	$(2^{\circ})'$	$= 6^0 = 1$	$= 2^{42}$

Order of Operations

Example 1. $60 - 25 \times 4 \div 2 + 3^2$

Example 2. $(10^2 - 80) \div 5 + (2^3 + 6^1)$

Remember your multiplication rules when dealing with negative bases:

Example 4	$(\Lambda)^2 - (\Lambda)(\Lambda) -$	+×+=+
Litample 4.	(-4) - (-4)(-4) -	- × - = +
		+ × - = -
Example 5.	(-2) ³ = (-2)(-2)(-2) =	- × + = -

If there is nothing to do inside a bracket move on...

Example 6. $(-2) \times 5 + (-5)^2$

Sometimes you can have a bracket within a bracket – work from the inside out:

Example 7. $((5+2) - 4) \times 2 =$

Example 8. $(4 - (-2)) + (2^2 - 14^0)$

Try these:

$$(-5)^2 - 2 \times (-9) + 6$$
 $3 \times 10 + 8 - 4^2$

$$(-9) - (-8) + 2 \times 4^2$$
 $(-3)^3 - 2 + 8 \div (-8)$

$$8 \div (-4) \times (-6)^2 + 7$$
 $4 \times (-8) + 6 - (-2)^3$

$$10 \times 5 - (-6)^2 + (-8)$$
 $(-5)^2 \times 3 \div 5 + 9$

$$(10 \div (-5) - (-2)) \times (-3)^3$$
 $4 \times (-6) \div 8 + 3^3$

Ask your teacher for mini quiz 2

$$\begin{array}{rcl} \frac{(-5)^2 - 2 \times (-9) + 6}{25 - 2 \times (-9) + 6} & 3 \times 10 + 8 - 4^2 \\ = 25 - 2 \times (-9) + 6 & = 3 \times 10 + 8 - 16 \\ = 25 - (-18) + 6 & = 38 - 16 \\ = 43 + 6 & = 38 - 16 \\ = 49 & = 22 \\ \hline (-9) - (-8) + 2 \times 4^2 & (-3)^3 - 2 + 8 \div (-8) \\ = (-9) - (-8) + 2 \times 16 & = (-27) - 2 + 8 \div (-8) \\ = (-9) - (-8) + 32 & = (-27) - 2 + 8 \div (-8) \\ = (-2) - (-8) + 32 & = (-27) - 2 + (-1) \\ = (-1) + 32 & = (-29) + (-1) \\ = 31 & = -30 \\ \hline 8 \div (-4) \times (-6)^2 + 7 & 4 \times (-8) + 6 - (-2)^3 \\ = 8 \div (-4) \times 36 + 7 & = 4 \times (-8) + 6 - (-8) \\ = (-2) \times 36 + 7 & = (-32) + 6 - (-8) \\ = (-72) + 7 & = (-26) - (-8) \\ = (-72) + 7 & = (-26) - (-8) \\ = -65 & = -18 \\ \hline 10 \times 5 - (-6)^2 + (-8) & = 25 \times 3 \div 5 + 9 \\ = 10 \times 5 - 36 + (-8) & = 25 \times 3 \div 5 + 9 \\ = 50 - 36 + (-8) & = 15 + 9 \\ = 6 & = 24 \\ \hline (10 \div (-5) - (-2)) \times (-3)^3 & 4 \times (-6) \div 8 + 3^3 \\ = ((-2) - (-2)) \times (-3)^3 & = 4 \times (-6) \div 8 + 27 \\ = (-24) \div 8 + 27 \\ = 0 \times (-27) & = 24 \end{array}$$

Review LG 2 Quiz

Begin here						$(2)^{6}$
$3^4 \cdot 3^5$	31	$\frac{5^{14}}{5^2}$	5 ¹⁶	$\frac{(-5)^4}{(-5)^2}$	(-5) ²	$\frac{\left(\frac{2}{3}\right)}{\left(\frac{2}{2}\right)^{26}}$
		5				(3)
39	AAA	512	(-4)15	$\left(\frac{2}{3}\right)^5$	(2)3)	$\left(\frac{2}{3}\right)^{-20}$
$4^3 \cdot 4^3 \cdot 4^{-2}$	4 ⁸	$(-4)^3 \cdot (-4)^5$	(-4) ¹	$\left(\frac{2}{3}\right)^3 \cdot \left(\frac{2}{3}\right)^2$	$\left(\frac{2}{3}\right)^6$	$3^8 \cdot 3^5 \cdot 3^7$
4-8	(-A) ⁸	310	338	3 ⁻⁴	39	320
$7^4 \cdot 7^4$	7 ⁸	$\frac{3^{31}}{2^{7}}$	3 ²⁴	$\frac{3^3}{2^7}$	310	You did it!!
		3'	©Benny Boyd 2023	3'		

Exponents Maye: Do each problem and shade the path with the correct answer on the maze with a highlighter or colored pencil.

Repeated multiplication	Base	Exponent	Exponential Form	Evaluate
5 x 5				
			2 ⁵	
	3	4		

Evaluate:

 $44^0 = 78^1 = 13^0 = 125^1 = y^0 =$

Write as a single power:

	$(48^2)^0 =$	(5	$(3^2)^4 =$	(3
--	--------------	----	-------------	----

Solve:

$$44^0 + 3^2 \div 5 \times 6 + 8 \div (-2) =$$