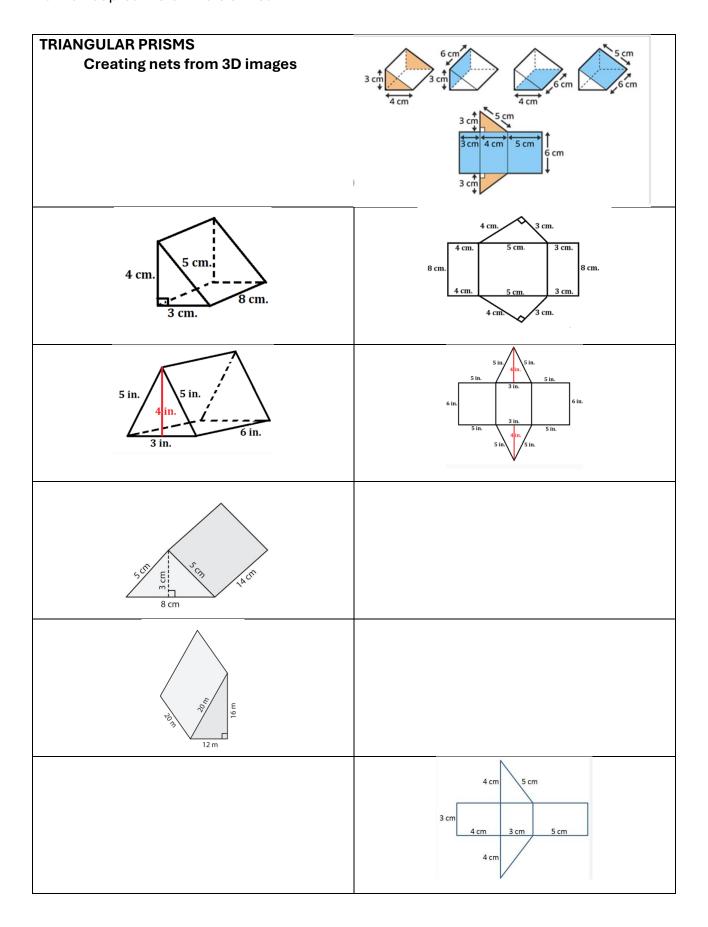
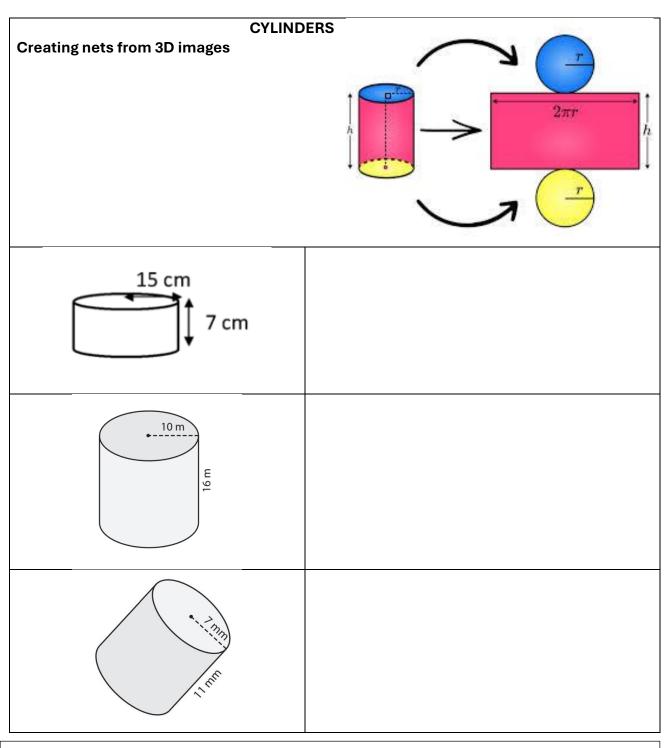
Math 9 Adapted LG 5 - Nets & Area of 3D objects

Expectation 1 – Drawing Nets of 3D Objects

Nets are 2D versions of 3D objects. Imagine if you had a box and you cut it at the edges so that it could lie flat. The squished box would be a net.

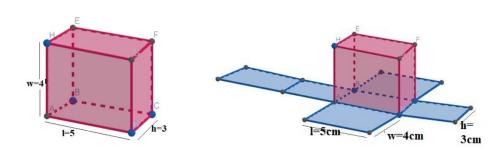

Object	3D	Net	Real life examples
Rectangular Prism	Heigth		
Triangular Prism			
FIISIII	h h		
Cylinder	r		Campbells
	h	h	CONTENT MODELLE


Complete the chart below

Object	Number and type (rectangle/triangle/circle) of faces
Rectangular Prism	
Triangular Prism	
Cylinder	

Complete the chart: Draw and label the net for the 3D images shown

Complete the chart: Draw and label the net for the 3D images shown			
6 cm 2 cm	FRONT BACK 6 cm 3 cm		
5 cm 5 cm	5 cm		
12 cm			
4m 12m			
9 m			

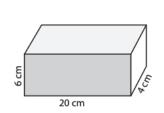

The width of the rectangle is the same as the circumference of the circle for each cylinder.

Circumference of a circle = $2\pi r$

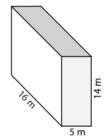
Calculate the width of the rectangles above and add to your diagram:

$$2 \times \pi \times _{15} =$$

Expectation 2 – Calculating the Area of 3D Objects

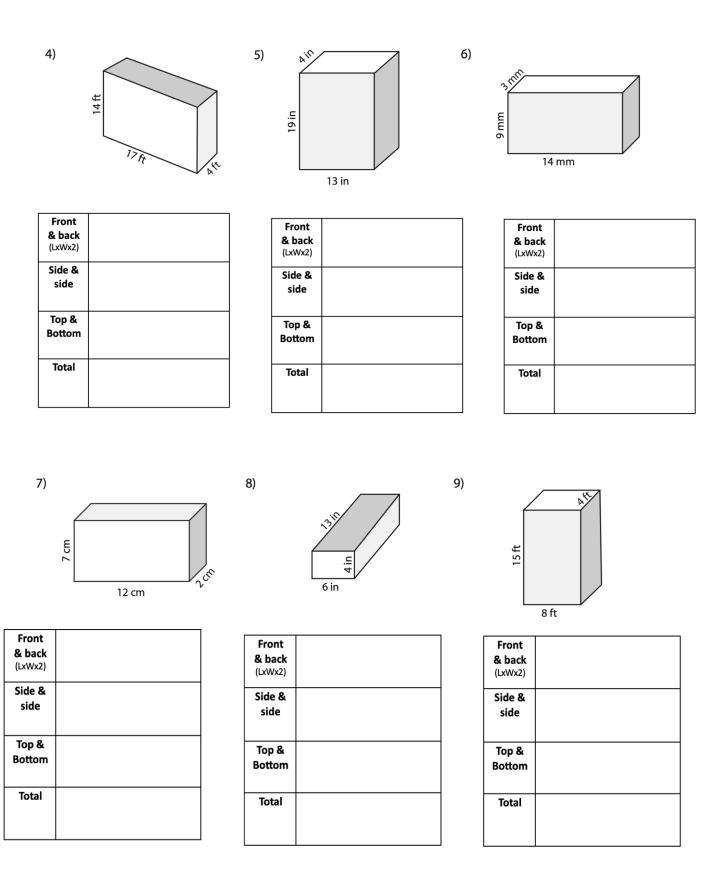

Front & back (LxWx2)	
Side & side	
Top & Bottom	
Total	

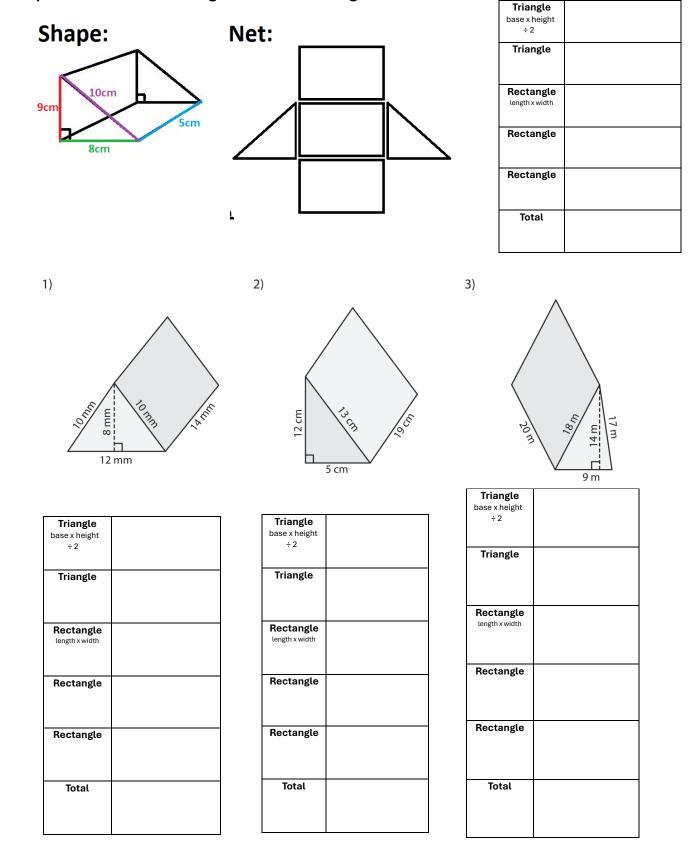
Practice:


Find the surface area of each rectangular prism.

2)

1) E E m 13 mm


3)

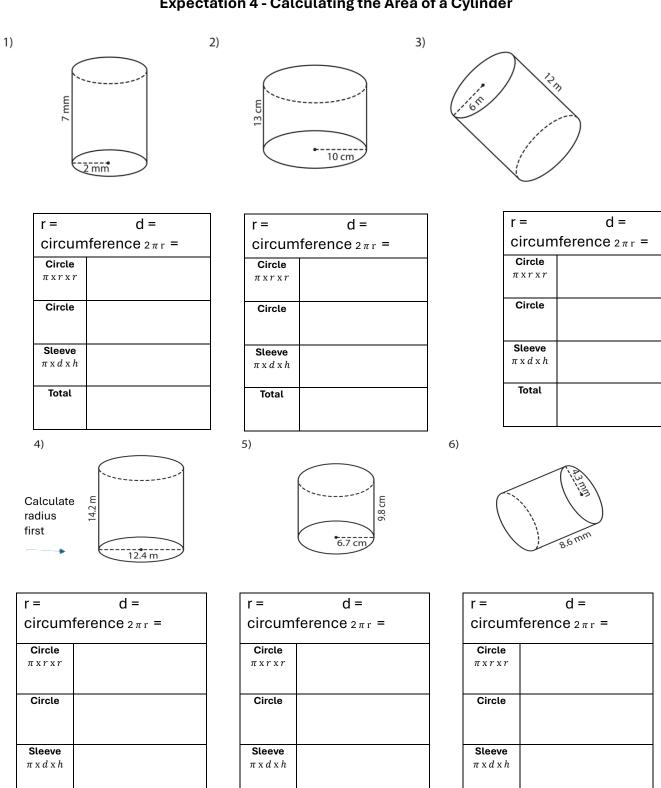

Front & back (LxWx2)	
Side & side	
Top & Bottom	
Total	

Front & back (LxWx2)	
Side & side	
Top & Bottom	
Total	

Front & back (LxWx2)	
Side & side	
Top & Bottom	
Total	

Expectation 3 - Calculating the Area of a Triangular Prism

4) 5) 6) 16 m 8 cm 12 mm 12 m **Triangle** base x height ÷ 2 Triangle Triangle base x height ÷ 2 base x height ÷ 2 Triangle Triangle Triangle Rectangle Rectangle Rectangle length x width length x width length x width Rectangle Rectangle Rectangle Rectangle Rectangle Rectangle Total Total Total 7) Triangle base x height ÷ 2 Triangle Rectangle length x width


Rectangle

Rectangle

Total

Total

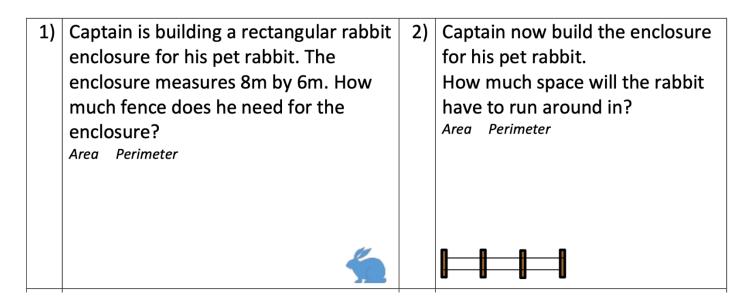
Expectation 4 - Calculating the Area of a Cylinder

Total

Total

r = d = r = d = r = aircumforonco a = aircumforonco a

-,	
	E
Calculate radius first	9.4 m


r =	d =		
circum	circumference $2\pi r$ =		
Circle			
$\pi \times r \times r$			
Circle			
Sleeve			
$\pi \times d \times h$			
Total			
L	l		

r =	d =		
circum	circumference $2\pi r$ =		
Circle			
$\pi \times r \times r$			
Circle			
Sleeve			
$\pi \times d \times h$			
Total			
L			

r =	d =
circum	ference 2πr =
Circle	
$\pi \times r \times r$	
Circle	
Sleeve	
$\pi \times d \times h$	
Total	

	PROBLEM	CYLINDER	WORKING OUT
1)	A hockey puck is a disc which is 1 inch thick and has a diameter of 3 inches. What is the surface area? in ²	3 in 1 in	

2)	A cardboard tube has a height of 11 cm and a diameter of 4 cm. What is the surface area? cm ²	4 cm 12 cm	
3)	A cylinder-shaped plant pot (with no lid) has a diameter of 12 inches and a height of 17 inches. What is the surface area? in ²	12 in 17 in	
4)	A plastic pipe has a diameter of 14 cm and a length of 3 m. What is the surface area? cm ²	14 cm	

Expectation 5 - Real-life Problems

1.	Your parents are away so you decide that now is the time to paint your walls electric blue. To make it more fun, you use spray paint (note – this is a terrible idea). You need to know how much to buy. The length of one wall is 4 meters, the other is 5 meters and the walls are 3 meters tall. Oh ya, and because you are wild, you paint the ceiling as well. Each spray car paint 10 m² of wall. How many do you need?
2.	You decide to make a bike ramp so that you can try to jump a sibling (Johny Knox style). You need to figure out how many square feet of plywood you'll need for your project. You want these dimensions: base - 4 ft, ramp 5 ft and height – 3 ft Width is 2 ft.
	Draw the ramp based on the dimensions above (it's a triangular prism)
	Find the total surface area.