| N T   |  |
|-------|--|
| Name: |  |
|       |  |

# 2.1 Warm Up



1. Circle the larger number.

- a) 1.1
- 1.2

- **b)** -10
- -1

2. Change the fractions to decimal numbers.



- a)  $\frac{1}{2}$
- 2

**b**)  $\frac{3}{5}$ 

- =\_\_\_\_÷\_\_\_
- =\_\_\_\_



- 3. Change the decimal numbers to fractions.
  - a) 0.3 The 3 is in the tenths place so the denominator is 10.
- **b)** 0.85



- - b) Write the numbers in ascending order (smallest to largest):



5. Make equivalent fractions.





- 6. Write the opposite of each number.
- Opposite numbers have the same numeral but different signs.



**b**) 3.4 → \_\_\_\_\_



c)  $\frac{3}{4} \rightarrow \boxed{\phantom{0}}$ 

d)  $-\frac{2}{5} \rightarrow \boxed{\phantom{a}}$ 

|  |   | , |  |
|--|---|---|--|
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  | ÷ |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |
|  |   |   |  |

# **Check Your Understanding**

### Communicate the Ideas

1. Use a number line to show that  $-\frac{1}{2}$  is greater than -3.



2. Is Dominic correct?

Circle YES or NO. Give 1 reason for your answer.



#### **Practise**

3. Match each rational number to a point on the number line.



a)  $\frac{3}{2}$  ———

**b)** -0.7 \_\_\_\_\_

c)  $-2\frac{1}{5}$ 

- d)  $-1\frac{1}{3}$
- 4. Plot  $\frac{8}{9}$ , -0.4,  $2\frac{1}{10}$ ,  $-\frac{5}{3}$  on the number line.

Change the fractions to decimal numbers.

Write  $-\frac{3}{8}$ ,  $1.\overline{8}$ ,  $\frac{9}{5}$ ,  $-\frac{1}{2}$ , and -1 in descending order.

Write each number in decimal form.

Write each fraction as an equivalent fraction.





Which rational number in each pair is greater? Show your thinking.



a)  $\frac{1}{5}$ , -1  $\leftarrow$  b)  $-\frac{1}{2}$ ,  $-\frac{3}{5}$ 



Write a decimal number between each pair of rational numbers.



a)  $\frac{3}{5}, \frac{4}{5}$ 

**b)**  $-\frac{1}{2}, -\frac{5}{8}$ 

Write a fraction between each pair of rational numbers.

Change each decimal to a fraction.

a) 0.2, 0.3 ++

**b)** -0.52, -0.53

#### **Apply**

10. Rewrite each amount as a positive or negative number. Example: "losing 2 dollars" = -2

a) a temperature increase of 8.2 °C = \_\_\_\_\_



**b)** growth of  $2.9 \text{ cm} = \_$ 



c) 3.5 m below sea level = \_



**d)** earning \$32.50 =



11. The table shows the average early-morning temperature for 7 communities in May.

| Community                          | Average Early-Morning Temperature (°C) |
|------------------------------------|----------------------------------------|
| Churchill, Manitoba                | -5.1                                   |
| Regina, Saskatchewan               | 3.9                                    |
| Edmonton, Alberta                  | 5.4                                    |
| Penticton, British Columbia        | 6.1                                    |
| Yellowknife, Northwest Territories |                                        |
| Whitehorse, Yukon Territory        | 0.6                                    |
| Resolute, Nunavut                  | -14.1                                  |

a) Write the temperatures in descending order.

\_\_\_ highest to lowest

b) Which community has an average temperature between the values for Whitehorse and

Churchill?

| *      |   |  |  |
|--------|---|--|--|
| Name:  | • |  |  |
| ranic. |   |  |  |

| Date: |  |
|-------|--|
|       |  |

12. Write >, <, or = to make each statement true.

> means greater than. < means less than.

- a)  $\frac{-9}{6}$   $\frac{3}{-2}$
- **b)**  $-\frac{3}{5}$   $-0.\overline{6}$

To compare fractions, change them to decimals or equivalent fractions with a common denominator.

- e) -3.25  $-3\frac{1}{5}$
- **d)**  $-\frac{4}{7}$   $-\frac{2}{3}$

# **Math Link**

Play this card game with a partner.

- Remove the jokers, kings, queens, jacks, and 10s from the deck.
- Divide the cards between you and your partner.
- The numbered cards are decimals.
   Red is positive and black is negative.
   Example: A black 5 is -0.5. A red 4 is 0.4.
- The red aces are +1. The black aces are -1.
- Both players lay a card face up at the same time.
   The greatest value wins and the winner keeps both cards.
- If there is a tie, both players lay 2 more cards face down and then a card face up. Whichever card is greater wins all cards from that turn.
- The player who ends up with all the cards is the winner.



### INTEGER RULES

## **Addition**

Same sign

Add the numbers and keep the sign (-4) + (-5) = (-9)

Different sign

Subtract the two numbers and keep the sign of the higher number (-10) + (+2) = (-8)

## Subtraction

Keep 1st number

Change Subtraction to addition Change The 2nd

number to its opposite

Then follow the addition rules

Therefore...

$$(-9) + (-3) = (-12)$$

## **Multiplication & Division**

Same signs: Positive answer

 $(-6) \times (-5) = (+30)$ 

Different signs: Negative answer

$$(-12) \div (+3) = (-4)$$

unper in civis

# 2.2 Warm Up

#### 1. Solve.

a) 5 + (-3) =

- **b)** (-10) + (-2) =
- c) (-4)-2  $= (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$ Add the opposite.
- **d)** 7 (–5)



**f)** 
$$(-5) \times (-1) =$$

**h**) 
$$(-15) \div (-3) =$$



a) 1.99 + 3.25

Estimate:

Calculate:

**b)** 0.57 – 0.14

Estimate:

Calculate:

=\_\_\_\_

Estimate:

**d)** 9.6 ÷ 3.2

c)  $3.1 \times 6.5$ 

Calculate:

Estimate:

Calculate:

3. Use the order of operations to solve.

a) 
$$8-4 \div (-2)$$

Add the opposite.

| Name: | Date: |
|-------|-------|
|       |       |

## **Check Your Understanding**

#### **Communicate the Ideas**

- 1. a) Do you think -0.32 + 6.5 will give a positive or negative answer? Give 1 reason for your answer.
  - **b)** Evaluate -0.32 + 6.5.

2. a) The products of these 2 expressions are \_\_\_\_\_\_\_ (the same or different)

 $2.54 \times (-4.22)$ 

 $-2.54 \times 4.22$ 

b) Give 1 reason for your answer.

### **Practise**

3. Estimate and calculate.

a) 0.9 + (-0.2)

Estimate:

**b)** 0.34 + (-1.22)

 $\it Estimate:$ 

≈\_\_\_\_\_

≈\_\_\_\_+\_\_

Calculate:

Calculate:

4. Estimate and calculate.



Estimate:

≈<u>\_\_\_</u>-\_\_

≈\_\_\_\_

Calculate:

**b)** -1.49 - (-6.83)

Estimate:

 $\approx$  \_\_\_\_\_ + (\_\_\_\_\_) Add the opposite.

≈\_\_\_\_

Calculate:

5. Estimate and calculate.

a) 
$$2.7 \times (-3.2)$$

Estimate:

Use the sign rules.

**b)**  $-5.5 \times (-5.5)$ 

Estimate:

Calculate:

Calculate:

6. Estimate and calculate.

a) 
$$(-40.4) \div (-4.04)$$

Estimate:

**b)** 
$$-3.25 \div 2.5$$

Estimate:

Calculate:

Calculate:

| Name: |  |
|-------|--|
| Mame. |  |

| Date: |
|-------|
|-------|

7. Evaluate. Use the order of operations.

| a) | $-2.1 \times 3.2$ | $+4.3 \times (-1.5)$ |    |
|----|-------------------|----------------------|----|
|    |                   | _)+(                 | _) |

| b) | -1.1[2.3 - (-0.5)] |  |
|----|--------------------|--|

When there is more than 1 set of brackets, use square brackets.

| = -1.1 × [2.3 + | ] Add the opposite |
|-----------------|--------------------|
| _ 11 \          |                    |

### **Apply**

The temperature in Kelowna went from -2.2 °C to -11.0 °C in 4 h. How many degrees did the temperature drop per hour?

Temperature change = (\_\_\_\_\_) - (\_\_\_\_\_)

Total time = \_\_\_\_\_

Average temperature drop =  $\frac{\text{temperature change}}{\text{total number of hours}}$ 

- A pelican dives vertically from a height of 3.8 m above the water. It then catches a fish 2.3 m underwater. Sketch a diagram of the situation.
  - a) Write an expression using rational numbers to show the length of the pelican's dive.

Distance down to the water = \_\_\_\_

Distance from the top of the water to the fish = \_\_\_\_\_

Expression:

b) How far did the pelican dive? Solve the expression.

| Name: | Date: |  |
|-------|-------|--|
|-------|-------|--|

10. A submarine was cruising at a depth of 304.5 m. It then rose at 10.5 m per minute. How many minutes did it take to reach the surface?

| Contonact |  |
|-----------|--|
| Sentence: |  |

- 11. A company made a profit of \$8.6 million in its first year.

  It lost \$5.9 million in its second year. It lost another \$6.3 million in its third year.
  - a) After 3 years, did the company make or lose money? Show your calculations.

| Sentence: |  |
|-----------|--|

b) What was the average amount of money the company made or lost per year?



| Sentence: |       | <u>,</u> | <br> |
|-----------|-------|----------|------|
|           | <br>· | <u> </u> |      |

## **Math Link**

Play this game with a partner. You will need 2 dice and 1 coin.

- Roll 2 dice, one at a time. The numbers on the dice create a decimal number. Example: rolling 6, then 5 means 6.5.
- Toss the coin. Tossing heads means the rational number is positive.
   Tossing tails means the rational number is negative.
- Roll the dice and toss the coin again to get your second number.
- Add the 2 numbers.
- The person with the sum closest to 0 wins 2 points. If there is a tie, each person wins 1 point.
- The first player to reach 10 points wins.



9 LGI trp 3

Fraction Rules

ADDING & SUBTRACTING > need the same denominator



MULTIPLY

multiply numerators

2 11 × 3 - 12

multiply denominator

DIVISION

multiply reciprical of flip the second fraction

 $\frac{2}{5} \div \frac{3}{15} - 5 = \frac{2}{5} \times \frac{15}{3} - \frac{30}{15}$ 

\* lowest terms (reduce)

$$\begin{cases} \frac{12}{16} = \frac{3}{4} \\ \frac{1}{16} = \frac{3}{4} \end{cases}$$

need to : the numerator
and denominator by the
SAME number

# 2.3 Warm Up

Write the fractions in lowest terms.



2. Change  $4\frac{2}{3}$  to an improper fraction.

Example: 
$$3\frac{1}{2} = \frac{3 \times 2 + 1}{2}$$
 or  $3\frac{1}{2} = \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{1}{2} = \frac{7}{2}$ 

Add or subtract. Write your answers in lowest terms.



b)  $2\frac{1}{3} - 1\frac{5}{6}$  Write as improper fractions.

- 4. Multiply or divide. Write your answers in lowest terms.

a)  $3\frac{2}{5} \times 1\frac{1}{2}$  Change to improper fractions.

**b)**  $2\frac{3}{4} \div 3\frac{1}{2}$ 

### Show You Know

Stefano had \$50. He spent  $\frac{1}{5}$  of it on a movie,  $\frac{1}{2}$  on a round of golf, and  $\frac{1}{10}$  on a snack. How much does he have left?

Movie:

Golf:

Snack:

$$-\frac{1}{5} \times _{----}$$

Total amount spent: (\_\_\_\_\_) + (\_\_\_\_\_) = \_\_\_\_

Find how much he has left.

Stefano has \_\_\_\_\_ left.

### **Check Your Understanding**

#### **Communicate the Ideas**

- 1. a) Calculate  $\frac{-3}{4} \div \frac{3}{8}$  using a common b) Calculate  $\frac{-3}{4} \div \frac{3}{8}$  by multiplying by the denominator and dividing the numerators.
  - reciprocal.

c) Which method do you prefer? Give 1 reason for your answer.

#### **Practise**



2. Estimate and calculate.

a) 
$$\frac{3}{8} - \left(-\frac{1}{4}\right)$$

Estimate:



Calculate:

$$\frac{3}{8} - \left(-\frac{1}{4}\right)$$

$$= \frac{3}{8} - \left(-\frac{1}{4}\right)$$

Find a common denominator.



Add the opposite.



Estimate:

Calculate:

3. Estimate and calculate.

a) 
$$-\frac{3}{4} \times \left(-\frac{1}{9}\right)$$

Estimate:

Calculate:

**b)** 
$$3\frac{1}{3} \times 1\frac{3}{4}$$

Estimate:

Change to improper fractions.

c) 
$$\frac{1}{10} \div \left(-\frac{3}{8}\right)$$

Estimate:

Calculate:

**d)** 
$$-\frac{3}{8} \div 3\frac{1}{3}$$

Estimate:

Change  $3\frac{1}{3}$  to an improper fraction.

| Name: | Date: |  |
|-------|-------|--|
|       |       |  |

### **Apply**

4. Virginia made 75 sandwiches for a party.

She made  $\frac{1}{3}$  ham and cheese,  $\frac{1}{3}$  roast beef,  $\frac{1}{15}$  salmon,  $\frac{1}{15}$  tuna, and the rest chicken salad. How many sandwiches were chicken salad?

Ham and cheese:

Roast beef:

Salmon:

Tuna:

$$\frac{1}{3} \times 75$$
$$= \frac{1}{3} \times \frac{75}{1}$$



Number of sandwiches that are not chicken salad = \_\_\_\_\_ + \_\_\_ + \_\_\_\_ + \_\_\_\_ + \_\_\_\_ +

Number of chicken salad sandwiches = total sandwiches - non-chicken sandwiches



Sentence: \_\_\_\_\_\_

A vegetarian pizza is cut into 8 equal pieces. A Hawaiian pizza is cut into 6 equal pieces. Li ate 2 slices of the vegetarian pizza and 1 slice of the Hawaiian pizza.





Veg

Sentence:

b) How much pizza was left over?

a) How much pizza did Li eat?

Sentence:

| Name: |  | Date: |
|-------|--|-------|
|       |  |       |

7. Paul had \$120 to spend on school supplies.

He spent  $\frac{1}{2}$  on software,  $\frac{1}{4}$  on paper,  $\frac{1}{5}$  on pens and pencils, and the rest on other supplies. How much did he spend on other supplies?



| Senten | ce: |  |
|--------|-----|--|
|        |     |  |

## **Math Link**

Play this game with a partner or in a small group. You will need a deck of playing cards.

- Remove the jokers and face cards from the deck.
- Red cards represent positive integers. Black cards represent negative integers.
- Aces represent 1 or -1.
- Each player gets 4 cards. Use 2 of the 4 cards to make a fraction.
- The player whose fraction is furthest from 0 gets 1 point.
- The first player to get 10 points wins.



represents -7

represents