Math 9 Notes - LG 4/5

Introducing Polynomials
WATCH: https://www.youtube.com/watch?v=pr2-5UDEW2k

Variable - a symbol for a value we don't know yet (usually a letter like x or y).

Term - an expression made by MULTIPLYING numbers or variables.

The term 6y means \qquad where \qquad is the variable.

The term $5 x^{2} y$ means \qquad , where \qquad and \qquad are the variables.

Polynomial - an expression made up of 1 or more terms that are connected through addition or subtraction.

Number of terms	Name	Example
1	Monomial	
2	Binomial	
3	Trinomial	
4	Polynomial	

Ways we can describe polynomials:

Expression	\# terms	Variable(s)	Constant (a number alone)	Degree of each term (sum of the variable's exponents in each term)	Degree of the polynomial (largest degree of the terms)
$7 x^{2} y^{3}-2 x^{2}+3$					
$7 x^{6} y^{4}-9 z^{2}$					
$4 x-5 x^{4}+3 z-6$					
$7 a^{2}-2 a b c+b^{2}$					

\qquad Date: \qquad

Practise

- Complete the table.

Complete the table.

mepression	Number of trems	Degreeot Trsticmm	Degregerof Seconditeral	Degreeof Thico Trem	Degiee of Rolynomal
a) 6					
b) $3 x y+1$					
c) $11 k^{2}+7 k-5$					
d) $4-b$					

Use these polynomials to answer each question.
$3 b^{2}$

$$
2+p
$$

$4 s t+t-1$

$$
2 x^{2}-y^{2}
$$

a) Which one is a monomial? \qquad
b) Which ones have a degree of 2? \qquad and \qquad and \qquad
c) Which ones are binomials? \qquad and \qquad
d) Which ones have constant terms? \qquad and \qquad
e) Which one is a trinomial? \qquad

Name:
Date: \qquad
a) Draw a box around each term: $6 x^{2}-5$.
b) How many terms are in this polynomial? \qquad
c) What type of polynomial is this? \qquad
d) What is the degree of the polynomial? \qquad
e) What is the constant term? \qquad
Write an algebraic expression for each of the following:
a) the product of 6 and x

b) the sum of $2 x$ and 3
Add to get the sum.

Write each statement as an algebraic expression. Write what the variable represents.
a) Eight and a number are added together.
Let n represent the number.
Expression: \qquad
b) Omar has some money in his wallet. How much money does he have after a friend gives him $\$ 5$?
Let m represent \qquad
Expression: \qquad
c) The length of a page is 4 cm longer than the width.
d) The product of a number and 5 is increased by 2 .

Let \qquad represent \qquad -

Expression: \qquad
Expression: \qquad

Ricardo draws a rectangle. The dimensions are in metres.

b) Write an expression for the length of side B : \qquad
c) Write an equation using length (l) and width (w) for the perimeter of any rectangle:

Perimeter is the distance
\qquad around a shape.
d) Write an expression for the perimeter of Ricardo's rectangle:

Math 9 Notes - LG 4/5
Modelling Polynomials with Algebra Tiles
Watch: https://youtu.be/B5_ME2Cx958
Algebra tile values:

Write and expression for each of the following:
1.

2.

3.

4.

Model the following expressions using algebra tiles:

1. $1-3 x$
2. $2 x^{2}+4 x-2$
3. $5 x-5+x^{2}$
4. $x^{2}+x+2 x^{2}$

What happens if you have a negative and positive of the same tile?
\square

They make a zero pair!

Model $3 x+-x$
\qquad

Show You Know

a) Model $-x^{2}+4 x-3$.
b) What expression does the model show?

\qquad

Check Your Understanding

Communicate the Ideas

1. Write a polynomial that is true for all of these statements:

- a trinomial
- a degree of 2
- 1 variable
\qquad

2. Sonja and Myron are discussing this algebra tile model.

Sonja says, "This model shows the expression $3 x^{2}+x+2$." Myron says, "It shows $3 x^{2}-x-2$."
a) Who is correct? Circle SONJA or MYRON.
b) Give 1 reason for your answer.

Name: \qquad Date: \qquad

5.1 Warm Up

1. Circle the correct meaning of the expression $6 y$.
$6-y$
$6+y$
$6 \times y$
$6 \div y$
2. Complete the table.

Expression	Ease	Exponent	Repeatecmimiliticainon
a) 3^{2}	3		
b) x^{2}		2	$y \times y$
c) y^{2}			
d) t			

3. Write an expression for each algebra tile model.
a)

c) $\square\left[\begin{array}{l}\square \\ \square\end{array}\right.$

b) \square 亶

\qquad
\qquad
$\mathbb{N}^{\text {Q }}$ 4. Circle the variable(s).
a) $9 h$
b) $x^{2}+2 y$
4. Circle the constant.
a) $p^{2}+2$
b) $3 x^{2}+4 x-8$

Name: \qquad Date: \qquad

Write an expression for each polynomial.
a)
\qquad
b)

c)

d)
 \qquad

Draw algebra tiles to model each polynomial.
a) $x^{2}+x-1$
b) $3 x+2$

Apply

a) Draw a model of an algebraic expression that includes all of the following:

- at least one x^{2}-tile
- at least two x-tiles
- two 1-tiles
b) An expression for this model is \qquad -.
c) How many terms are in this model? \qquad
d) The type of polynomial this model represents is a \qquad .

Coefficient - the number that multiplies a variable.
Like terms - terms with the same variable and exponents (only different coefficients).
Examples of like terms:
$x^{2}-5 x^{2}+3 x^{2} \square$ the same variable with exponent $\left(x^{2}\right)$
$x y^{3}+5 x y^{3}+2 y^{3} x-3 x y^{3}<$ the same variable with exponent $\left(y^{3}\right)(x)$, order doesn't matter!

Identify like terms in the expression below:
$2 z^{3}+5 x y-4 x-5 z^{3}+10 y z+14 y x+2 y z+2 x^{2}$

Combining like terms using algebra tiles - remove zero pairs (ex. $\square \square$)
$5 x+2 x-3 x$
$3 x^{2}-2 x^{2}+x^{2}$
$2 x^{2}+5-3 x+x^{2}-2$
\qquad
\qquad

Practise

3. Complete the chart.

Expression	Coeficient(s)	Numberof Variable(s)	Varabie(s)	Exponent(s)of the Vanalole(s)
a) $4 d$				
b) $-p r t$				
c) $-8 f g^{2}$				
d) k				

4. a) Draw algebra tiles to model the terms.
i) $2 x^{2}$
ii) $-3 x^{2}$
iii) 2
iv) $-4 x$
b) Use the terms in part a). List the like pairs.
$2 x^{2}$ and \qquad 2 and \qquad
\qquad and \qquad
5. Use coloured pencils. Circle groups of like terms with the same colour.
a) $2 a \quad 5 \quad-7.1 a \quad 9 b \quad-c$
b) $\begin{array}{llllll}-1.9 & 6 p^{2} & 5 & -2 p & p^{2} & 0.7 p\end{array}$
c) $3 m \quad-2 a b \quad \frac{4}{-m} \quad 3 a b \quad-2 a d \quad m^{2}$

Simplify by collecting like terms＊remember to circle the sign in front！＊
$5 x^{2}-5+2 x-3 x+x^{2}+10$
$3 x y^{3}+2 x y-4 x y^{3}+y x+8 x y^{2}-2 y^{3} x$
$4 p+2 p^{2}+13-2 p-2 p^{2}+2$

Adding and Subtracting Polynomials
$(3 x-4)+(2 x+5)$

$(3 x-3)-(x-1)$

Rule for adding and subtracting polynomials

Adding－just drop the brackets \＆combine like terms．
Subtracting－change to opposite signs inside the $2^{\text {nd }}$ bracket，drop brackets $\&$ combine like terms．
$(5 x y+2 x)+(3 y x+x)$
$\left(6 x^{2}-4 x+2\right)-\left(2 x^{2}-2 x+1\right)$

Name: \qquad Date: \qquad
6. Complete the table. If there are like terms, simplify the expression.

Combine like terms.

7. Simplify by collecting like terms.
a) $3 x-2 x^{2}+x-2 x^{2}$
b) $-4-2 n^{2}-3 n+3+2 n^{2}$
8. Circle the expressions that are equal to $-3 x^{2}+x-4$ when simplified. Show your work.
A $-4+3 x^{2}+x$
B $x-4-3 x^{2}$

Rearrange the terms.
Keep the + and - signs with
the term that follows the sign.

C $x^{2}+2-4 x^{2}+3 x-6-2 x$
D $-4-3 x-3 x^{2}-0+5 x^{2}+4 x-6 x^{2}$
10. a) Write an expression for the perimeter of the figure.

$$
P=
$$

\qquad
b) Simplify the expression by combining like terms.

8. Subtract. Combine like terms.
b) $(8 c-3)-(-5 c)$
c) $\left(y^{2}-5 y\right)-\left(2 y-y^{2}\right)$
9. Subtract.
a) $\left(-3 r^{2}-5 r-2\right)-\left(r^{2}-2 r+4\right)$
b) $(m+7)-\left(m^{2}+7\right)$
c) $\left(3 b^{2}-5 b\right)-\left(2 b^{2}+4 b\right)$
d) $\left(6 j^{2}-4 j+3\right)-\left(-2 j^{2}-5\right)$

Apply

10. Complete the addition pyramid.

Find the value in any box by adding the expressions in the 2 boxes directly below it.

\qquad

Chapter 5 Review

Key Words

For \#1 to \#6, write the letter that best matches each description.
You may use each letter more than once or not at all.

1. $3 w$ is a like term \qquad A $-3 x+1$
2. has 3 terms \qquad B $-4 d+3$
3. monomial \qquad C $1-3 x^{2}$
4. opposite polynomial to $3 x-1$ \qquad D $-w$
5. polynomial with a degree of 2 \qquad E $x-6 y+2$
6. has the constant term 3 \qquad F $-3 x-1$
G $3 f-1$

5.1 The Language of Mathematics, pages 242-250

7. Complete the table.
monomial, binomial, trinomial, or polynomial

Expression	Degree	Number of demis	Type odrolynoniti
a) $5-p+p x-p^{2}$			
b) $3 f-6$			
c) $-2 a$			
d) $3 y^{2}+5 x y-27 x^{2}+2$			

8. a) What is the degree of the polynomial $a b-7 a+3$? \qquad
b) Explain how to find the degree of a term.
\qquad
c) Explain how to find the degree of a polynomial.
9. Draw algebra tiles to model the expression $3 x^{2}-2 x+1$.
\qquad

Check Your Understanding

Communicate the Ideas

1. What is the opposite of $-x^{2}+2 x-3$?
b) Use symbols to show the answer.
a) Use diagrams to show the answer.
c) Which method do you prefer? Give 1 reason for your answer.
2. a) Circle the error in Mei's work.
b) Correct the error.

$$
\begin{aligned}
& \left(-2 x^{2}+7\right)-\left(3 x^{2}+x-5\right) \\
= & \left(-2 x^{2}+7\right)+\left(-3 x^{2}-x+5\right) \\
= & -2 x^{2}-3 x^{2}-x+7+5 \\
= & 5 x^{2}-x+12
\end{aligned}
$$

Practise

3. a) Write the polynomial beside each diagram.

\qquad
b) Write the addition statement for the diagrams.
4. Add the polynomials. Draw algebra tiles or combine like terms.
a) $(-3 x+4)+(6 x)$
b) $\left(-a^{2}-3 a+2\right)+\left(-4 a^{2}+2 a\right)$
c) $\left(2 y^{2}-15\right)+(6 y+9)$
d) $\left(2 b^{2}-3\right)+\left(-b^{2}+2\right)$
\qquad
\qquad
5. Combine like terms to simplify the expressions.

a) $3-2 x+1+5 x$
b) $1-c+4+2 c-3+6 c$
6. The perimeter of a shape is $(4 x)+(3 x-1)+(x+3)+(x-2)$.

Each part in brackets is the length of one side.
a) Draw and label a shape for this expression.
b) Simplify the expression for the perimeter.

5.3 Adding and Subtracting Polynomials, pages 263-273

17. What is the opposite of each polynomial?
a) 7-a \rightarrow \qquad b) $x^{2}-2 x+4 \rightarrow$
18. $\left(3 x^{2}+4 x-9\right)+\left(2-5 x-x^{2}\right)$
a) Find the sum using algebra tiles.
b) Find the sum using symbols.
19. Combine like terms.

Add the opposite.
a) $(-p+7)+(4 p-5)$
b) $\left(a^{2}-a-2\right)-\left(5-3 a^{2}+6 a\right)$

